Advanced Search
MyIDEAS: Login

A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts

Contents:

Author Info

  • Christophe Van Nieuwenhuyze

    ()
    (National Bank of Belgium, Research Department)

Registered author(s):

    Abstract

    This paper aims to extract the common variation in a data set of 509 conjunctural series as an indication of the Belgian business cycle. The data set contains information on business and consumer surveys of Belgium and its neighbouring countries, macroeconomic variables and some worldwide watched indicators such as the ISM and the OECD confidence indicators. The statistical framework used is the One-sided Generalised Dynamic Factor Model developed by Forni, Hallin, Lippi and Reichlin (2005). The model splits the series in a common component, driven by the business cycle, and an idiosyncratic component. Well-known indicators such as the EC economic sentiment indicator for Belgium and the NBB overall synthetic curve contain a high amount of business cycle information. Furthermore, the richness of the model allows to determine the cyclical properties of the series and to forecast GDP growth all within the same unified setting. We classify the common component of the variables into leading, lagging and coincident with respect to the common component of quarter-on-quarter GDP growth. 22% of the variables are found to be leading. Amongst the most leading variables we find asset prices and international confidence indicators such as the ISM and some OECD indicators. In general, national business confidence surveys are found to coincide with Belgian GDP, while they lead euro area GDP and its confidence indicators. Consumer confidence seems to lag. Although the model captures the dynamic common variation contained in the data set, forecasts based on that information are insufficient to deliver a good proxy for GDP growth as a result of a nonnegligible idiosyncratic part in GDP's variance. Lastly, we explore the dependence of the model's results on the data set and show through a data reduction process that the idiosyncratic part of GDP's quarter-on-quarter growth can be dramatically reduced. However, this does not improve the forecasts.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.nbb.be/doc/oc/repec/reswpp/WP80.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by National Bank of Belgium in its series Working Paper Research with number 80.

    as in new window
    Length: 39 pages
    Date of creation: Mar 2006
    Date of revision:
    Handle: RePEc:nbb:reswpp:200603-2

    Contact details of provider:
    Postal: Boulevard de Berlaimont 14, B-1000 Bruxelles
    Phone: (+ 32) (0) 2 221 25 34
    Fax: (+ 32) (0) 2 221 31 62
    Email:
    Web page: http://www.nbb.be
    More information through EDIRC

    Related research

    Keywords: Dynamic factor model; business cycle; leading indicators; forecasting; data reduction.;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:nbb:reswpp:200603-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.