Advanced Search
MyIDEAS: Login to save this article or follow this journal

An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series

Contents:

Author Info

  • Bhardwaj, Geetesh
  • Swanson, Norman R.

Abstract

This paper addresses the notion that many fractional I(d) processes may fall into the "empty box" category, as discussed in Granger (1999). We present ex ante forecasting evidence based on an updated version of the absolute returns series examined by Ding, Granger and Engle (1993) that suggests that ARFIMA models estimated using a variety of standard estimation procedures yield “approximations” to the true unknown underlying DGPs that sometimes provide significantly better out-of-sample predictions than AR, MA, ARMA, GARCH, and related models, with very few models being “better” than ARFIMA models, based on analysis of point mean square forecast errors (MSFEs), and based on the use of Diebold and Mariano (1995) and Clark and McCracken (2001) predictive accuracy tests. Results are presented for a variety of forecast horizons and for recursive and rolling estimation schemes. The strongest evidence in favor of ARFIMA models arises when various transformations of 5 major stock index returns are examined. For these data, ARFIMA models are frequently found to significantly outperform linear alternatives around one third of the time, and in the case of 1-month ahead predictions of daily returns based on recursively estimated models, this number increases to one half of the time. Overall, it is found that ARFIMA models perform better for greater forecast horizons, while this is clearly not the case for non-ARFIMA models. We provide further support for our findings via examination of the large (215 variable) dataset used in Stock and Watson (2002), and via discussion of a series of Monte Carlo experiments that examine the predictive performance of ARFIMA model.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VC0-4FJV1YJ-3/2/9f3ac3f84bbcd8c3f56adb63251737ea
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 131 (2006)
Issue (Month): 1-2 ()
Pages: 539-578

as in new window
Handle: RePEc:eee:econom:v:131:y:2006:i:1-2:p:539-578

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Cowles Foundation Discussion Papers 1367, Cowles Foundation for Research in Economics, Yale University, revised Jul 2004.
  2. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
  3. Dittmann, Ingolf & Granger, Clive W. J., 2000. "Properties of nonlinear transformations of fractionally integrated processes," Technical Reports 2000,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  4. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
  5. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  7. Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
  8. Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  9. Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  10. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  11. Rossi, Barbara, 2002. "Testing Long-horizon Predictive Ability with High Persistence, and the Meese-Rogoff Puzzle," Working Papers 02-10, Duke University, Department of Economics.
  12. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
  13. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  14. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
  15. Francis X. Diebold & Glenn D. Rudebusch, 1990. "On the power of Dickey-Fuller tests against fractional alternatives," Finance and Economics Discussion Series 119, Board of Governors of the Federal Reserve System (U.S.).
  16. Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
  17. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  18. Breitung, Jorg & Hassler, Uwe, 2002. "Inference on the cointegration rank in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 167-185, October.
  19. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  20. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  21. Jurgen A. Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Papers 2001-W27, Economics Group, Nuffield College, University of Oxford.
  22. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
  23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  24. Charles S. Bos & Philip Hans Franses & Marius Ooms, 2001. "Inflation, Forecast Intervals and Long Memory Regression Models," Tinbergen Institute Discussion Papers 01-029/4, Tinbergen Institute.
  25. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  26. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-75, July.
  27. Peter F. Christoffersen & Francis X. Diebold, 1997. "Optimal prediction under asymmetric loss," Working Papers 97-11, Federal Reserve Bank of Philadelphia.
  28. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
  29. ANDREWS, DONALD W & Sun, Yixiao X, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence," University of California at San Diego, Economics Working Paper Series qt9wt048tt, Department of Economics, UC San Diego.
  30. repec:cup:macdyn:v:5:y:2001:i:4:p:598-620 is not listed on IDEAS
  31. Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, Exeter University, Department of Economics.
  32. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  33. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Model confidence sets for forecasting models," Working Paper 2005-07, Federal Reserve Bank of Atlanta.
  34. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  35. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  36. Engle, Robert F & Smith, Aaron, 1998. "Stochastic Permanent Breaks," University of California at San Diego, Economics Working Paper Series qt99v0s0zx, Department of Economics, UC San Diego.
  37. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  38. Norman R. Swanson, 2000. "An Out of Sample Test for Granger Causality," Econometric Society World Congress 2000 Contributed Papers 0362, Econometric Society.
  39. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
  40. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
  41. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 598-620, September.
  42. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  43. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  44. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  45. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  46. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
  47. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
  48. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
  49. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
  50. repec:cup:etheor:v:13:y:1997:i:6:p:808-17 is not listed on IDEAS
  51. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
  52. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-38, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:131:y:2006:i:1-2:p:539-578. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.