Advanced Search
MyIDEAS: Login

Model confidence sets for forecasting models

Contents:

Author Info

  • Peter Reinhard Hansen
  • Asger Lunde
  • James M. Nason

Abstract

The paper introduces the model confidence set (MCS) and applies it to the selection of forecasting models. An MCS is a set of models that is constructed so that it will contain the “best” forecasting model, given a level of confidence. Thus, an MCS is analogous to a confidence interval for a parameter. The MCS acknowledges the limitations of the data so that uninformative data yield an MCS with many models, whereas informative data yield an MCS with only a few models. We revisit the empirical application in Stock and Watson (1999) and apply the MCS procedure to their set of inflation forecasts. In the first pre-1984 subsample we obtain an MCS that contains only a few models, notably versions of the Solow-Gordon Phillips curve. On the other hand, the second post-1984 subsample contains little information and results in a large MCS. Yet, the random walk forecast is not contained in the MCS for either of the samples. This outcome shows that the random walk forecast is inferior to inflation forecasts based on Phillips curve-like relationships.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.frbatlanta.org/filelegacydocs/wp0507.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of Atlanta in its series Working Paper with number 2005-07.

as in new window
Length:
Date of creation: 2005
Date of revision:
Handle: RePEc:fip:fedawp:2005-07

Contact details of provider:
Postal: 1000 Peachtree St., N.E., Atlanta, Georgia 30309
Phone: 404-521-8500
Email:
Web page: http://www.frbatlanta.org/
More information through EDIRC

Order Information:
Email:

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(02), pages 404-447, April.
  2. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
  3. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 97-111.
  4. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
  5. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  6. Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
  7. Christian Dreger & Konstantin A. Kholodilin, 2010. "Forecasting Private Consumption by Consumer Surveys," Discussion Papers of DIW Berlin 1066, DIW Berlin, German Institute for Economic Research.
  8. James M. Nason & Gregor W. Smith, 2005. "Identifying the New Keynesian Phillips curve," Working Paper 2005-01, Federal Reserve Bank of Atlanta.
  9. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  10. Jörg Döpke & Ulrich Fritsche, 2006. "Growth and inflation forecasts for Germany a panel-based assessment of accuracy and efficiency," Empirical Economics, Springer, vol. 31(3), pages 777-798, September.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2005-07. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Meredith Rector).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.