Advanced Search
MyIDEAS: Login to save this article or follow this journal

Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

Contents:

Author Info

  • Morten �rregaard Nielsen
  • Per Houmann Frederiksen

Abstract

In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all the estimators are fairly robust to conditionally heteroscedastic errors, (3) the local polynomial Whittle and bias-reduced log-periodogram regression estimators are shown to be more robust to short-run dynamics than other semiparametric (frequency domain and wavelet) estimators and in some cases even outperform the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930500405790
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 24 (2005)
Issue (Month): 4 ()
Pages: 405-443

as in new window
Handle: RePEc:taf:emetrv:v:24:y:2005:i:4:p:405-443

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: Bias; Finite sample distribution; Fractional integration; Maximum likelihood; Monte Carlo simulation; Parametric estimation; Semiparametric estimation; Wavelet;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tse, Y.K. & Anh, V.V. & Tieng, Q., 2002. "Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 153-161.
  2. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Is consumption too smooth? Long memory and the Deaton paradox," Finance and Economics Discussion Series 57, Board of Governors of the Federal Reserve System (U.S.).
  3. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
  4. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
  5. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(03), pages 464-484, June.
  6. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  7. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  8. Nielsen, Morten rregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(01), pages 116-146, February.
  9. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
  10. Donald W.K. Andrews & Offer Lieberman, 2002. "Valid Edgeworth Expansions for the Whittle Maximum Likelihood Estimator for Stationary Long-memory Gaussian Time Series," Cowles Foundation Discussion Papers 1361, Cowles Foundation for Research in Economics, Yale University.
  11. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  12. Donald W.K. Andrews & Yixiao Sun, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1384, Cowles Foundation for Research in Economics, Yale University.
  13. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(02), pages 501-540, April.
  14. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
  15. Jensen, Mark J, 1999. "Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter," MPRA Paper 39152, University Library of Munich, Germany.
  16. Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 535, University of Essex, Department of Economics.
  17. Jensen Mark J., 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-17, January.
  18. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  19. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  20. Yin-Wong Cheung & Francis X. Diebold, 1990. "On maximum-likelihood estimation of the differencing parameter of fractionally integrated noise with unknown mean," Discussion Paper / Institute for Empirical Macroeconomics 34, Federal Reserve Bank of Minneapolis.
  21. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  22. Francis X. Diebold & Steven Husted & Mark Rush, 1990. "Real exchange rates under the gold standard," Discussion Paper / Institute for Empirical Macroeconomics 32, Federal Reserve Bank of Minneapolis.
  23. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, 05.
  24. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  25. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
  26. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  27. Hauser, Michael A, 1997. "Semiparametric and Nonparametric Testing for Long Memory: A Monte Carlo Study," Empirical Economics, Springer, vol. 22(2), pages 247-71.
  28. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  29. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  30. L. Giraitis & P.M. Robinson, 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
  31. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
  2. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
  3. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
  4. Aaron Smallwood; Alex Maynard; Mark Wohar, 2005. "The Long and the Short of It: Long Memory Regressors and Predictive Regressions," Computing in Economics and Finance 2005 384, Society for Computational Economics.
  5. Morana, Claudio, 2006. "A small scale macroeconometric model for the Euro-12 area," Economic Modelling, Elsevier, vol. 23(3), pages 391-426, May.
  6. Marcel Aloy & Gilles De Truchis, 2013. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems," Working Papers halshs-00879522, HAL.
  7. K. Nadarajah & Gael M. Martin & D.S. Poskitt, 2014. "Issues in the Estimation of Mis-Specified Models of Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 18/14, Monash University, Department of Econometrics and Business Statistics.
  8. Aloy Marcel & Tong Charles Lai & Peguin-Feissolle Anne & Dufrénot Gilles, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
  9. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, School of Economics and Management, University of Aarhus.
  10. Hiremath, Gourishankar S & Bandi, Kamaiah, 2011. "Testing Long Memory in Stock Returns of Emerging Markets: Some Further Evidence," MPRA Paper 48517, University Library of Munich, Germany.
  11. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2014. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 10/14, Monash University, Department of Econometrics and Business Statistics.
  12. Afonso Goncalves da Silva & Peter Robinson, 2008. "Finite Sample Performance in Cointegration Analysis of Nonlinear Time Series with Long Memory," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 268-297.
  13. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:24:y:2005:i:4:p:405-443. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.