Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimation of Fractional Integration in the Presence of Data Noise

Contents:

Author Info

  • Haldrup, Niels
  • Nielsen, Morten Oe.

    ()
    (Department of Economics Aarhus, Denmark)

Abstract

The paper presents a comparative study on the performance of commonly used estimators of the fractional order of integration when data is contaminated by noise. In particular, measurement errors, additive outliers, temporary change outliers, and structural change outliers are addressed. It occurs that when the sample size is not too large, as is frequently the case for macroeconomic data, then non-persistent noise will generally bias the estimators of the memory parameter downwards. On the other hand, relatively more persistent noise like temporary change outliers and structural changes can have the opposite effect and thus bias the fractional parameter upwards. Surprisingly, with respect to the relative performance of the various estimators, the parametric conditional maximum likelihood estimator with modelling of the short run dynamics clearly outperforms the semiparametric estimators in the presence of noise that is not too persistent.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/afn/wp/03/wp03_10.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series Economics Working Papers with number 2003-10.

as in new window
Length: 19
Date of creation:
Date of revision:
Handle: RePEc:aah:aarhec:2003-10

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: Fractional integration; long memory; outliers; measurement errors; structural change;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. David Byers & James Davidson & David Peel, 1997. "Modelling Political Popularity: an Analysis of Long-range Dependence in Opinion Poll Series," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 471-490.
  2. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
  3. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
  4. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
  5. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-78, October.
  6. Franses, Ph.H.B.F. & Ooms, M. & Bos, C.S., 1998. "Long memory and level shifts: re-analysing inflation rates," Econometric Institute Research Papers EI 9811, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  7. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
  8. Dittmann, Ingolf & Granger, Clive W. J., 2000. "Properties of nonlinear transformations of fractionally integrated processes," Technical Reports 2000,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  9. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  10. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  11. Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  12. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  13. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  14. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  15. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  16. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
  17. Terence Tai-Leung, Chong & Gilbert Chiu-Sing, Lui, 1998. "Estimating the Fractionally Integrated Process in the Presence of Measurement Errors," Departmental Working Papers _090, Chinese University of Hong Kong, Department of Economics.
  18. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  19. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
  20. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  21. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  22. Laura Mayoral & Juan J. Dolado & Jes�s Gonzalo, 2003. "Long-range dependence in Spanish political opinion poll series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 137-155.
  23. Yoon, Gawon, 2005. "Long-memory property of nonlinear transformations of break processes," Economics Letters, Elsevier, vol. 87(3), pages 373-377, June.
  24. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  25. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  26. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2003-10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.