Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimation of fractional integration in the presence of data noise

Contents:

Author Info

  • Haldrup, Niels
  • Nielsen, Morten Orregaard

Abstract

The paper presents a comparative study on the performance of commonly used estimators of the fractional order of integration when data is contaminated by noise. In particular, measurement errors, additive outliers, temporary change outliers, and structural change outliers are addressed. It occurs that when the sample size is not too large, as is frequently the case for macroeconomic data, then non-persistent noise will generally bias the estimators of the memory parameter downwards. On the other hand, relatively more persistent noise like temporary change outliers and structural changes can have the opposite effect and thus bias the fractional parameter upwards. Surprisingly, with respect to the relative performance of the various estimators, the parametric conditional maximum likelihood estimator with modelling of the short run dynamics clearly outperforms the semiparametric estimators in the presence of noise that is not too persistent.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8V-4JCCFBY-1/2/a7c5c57a1cd45fe6db59d76f7137d485
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 51 (2007)
Issue (Month): 6 (March)
Pages: 3100-3114

as in new window
Handle: RePEc:eee:csdana:v:51:y:2007:i:6:p:3100-3114

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
  2. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
  3. Terence Tai-Leung, Chong & Gilbert Chiu-Sing, Lui, 1998. "Estimating the Fractionally Integrated Process in the Presence of Measurement Errors," Departmental Working Papers _090, Chinese University of Hong Kong, Department of Economics.
  4. Dittmann, Ingolf & Granger, Clive W.J., 2000. "Properties of Nonlinear Transformations of Fractionally Integrated Processes," University of California at San Diego, Economics Working Paper Series qt0kk9x0mc, Department of Economics, UC San Diego.
  5. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
  6. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  7. Francis X. Diebold & Glenn D. Rudebusch, 1988. "Long memory and persistence in aggregate output," Finance and Economics Discussion Series 7, Board of Governors of the Federal Reserve System (U.S.).
  8. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  9. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  10. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
  11. David Byers & James Davidson & David Peel, 1997. "Modelling Political Popularity: an Analysis of Long-range Dependence in Opinion Poll Series," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 471-490.
  12. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  13. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  14. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  15. Yoon, Gawon, 2005. "Long-memory property of nonlinear transformations of break processes," Economics Letters, Elsevier, vol. 87(3), pages 373-377, June.
  16. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  17. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  18. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  19. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  20. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
  21. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
  22. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-78, October.
  23. Laura Mayoral & Juan J. Dolado & Jes�s Gonzalo, 2003. "Long-range dependence in Spanish political opinion poll series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 137-155.
  24. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
  25. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  26. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:6:p:3100-3114. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.