Advanced Search
MyIDEAS: Login

A Bias-Reduced Log-Periodogram Regression Estimator for the Long-Memory Parameter

Contents:

Author Info

Abstract

The widely used log-periodogram regression estimator of the long-memory parameter d proposed by Geweke and Porter-Hudak (1983) (GPH) has been criticized because of its finite-sample bias, see Agiakloglou, Newbold, and Wohar (1993). In this paper, we propose a simple bias-reduced log-periodogram regression estimator, {d hat}r, that eliminates the first- and higher-order biases of the GPH estimator. The bias-reduced estimator is the same as the GPH estimator except that one includes frequencies to the power 2k for k = 1,...,r, for some positive integer r, as additional regressors in the pseudo-regression model that yields the GPH estimator. The reduction in bias is obtained using assumptions on the spectrum only in a neighborhood of the zero frequency, which is consistent with the semiparametric nature of the long-memory model under consideration. Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998), we establish the asymptotic bias, variance, and mean-squared error (MSE) of {d hat}r, determine the MSE optimal choice of the number of frequencies, m to include in the regression, and establish the asymptotic normality of {d hat}r. These results show that the bias of {d hat}r goes to zero at a faster rate than that of the GPH estimator when the normalized spectrum at zero is sufficiently smooth, but that its variance only is increased by a multiplicative constant. In consequence, the optimal rate of convergence to zero of the MSE of {d hat}dr is faster than that of the GPH estimator. We establish the optimal rate of convergence of a minimax risk criterion for estimators of d when the normalized spectral density is in a class that includes those that are smooth of order s > 1 at zero. We show that the bias-reduced estimator {d hat}r attains this rate when r > (s-2)/2 and m is chosen appropriately. For s > 2, the GPH estimator does not attain this rate. The proof of these results uses results of Giraitis, Robinson, and Samarov (1997). Some Monte Carlo simulation results for stationary Gaussian ARFIMA(1,d,1) models show that the bias-reduced estimators perform well relative to the standard log-periodogram estimator.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d12b/d1263.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1263.

as in new window
Length: 38 pages
Date of creation: Jun 2000
Date of revision:
Handle: RePEc:cwl:cwldpp:1263

Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Asymptotic bias; asymptotic normality; bias reduction; frequency domain; long-range dependence; optimal rate; rate of convergence; strongly dependent time series;

Other versions of this item:

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1263. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.