Advanced Search
MyIDEAS: Login

Citations for "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series"

by Bhardwaj, Geetesh & Swanson, Norman R.

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window
  1. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2011. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 1103, University of Nevada, Las Vegas , Department of Economics.
  2. Axel Groß-Klußmann & Nikolaus Hautsch, 2011. "Predicting Bid-Ask Spreads Using Long Memory Autoregressive Conditional Poisson Models," SFB 649 Discussion Papers SFB649DP2011-044, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  3. Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
  4. Quoreshi, A.M.M. Shahiduzzaman, 2014. "Bivariate Integer-Valued Long Memory Model for High Frequency Financial Count Data," CITR Working Paper Series 2014/03, Center for Innovation and Technology Research, Blekinge Institute of Technology.
  5. Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, School of Economics and Management, University of Aarhus.
  6. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
  7. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
  8. Wolfgang Härdle & Julius Mungo, 2007. "Long Memory Persistence in the Factor of Implied Volatility Dynamics," SFB 649 Discussion Papers SFB649DP2007-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  9. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def10, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
  10. Kasai, Ndahiriwe & Naraidoo, Ruthira, 2011. "Evaluating the forecasting performance of linear and nonlinear monetary policy rules for South Africa," MPRA Paper 40699, University Library of Munich, Germany.
  11. Slim Chaouachi & Zied Ftiti & Frederic Teulon, 2014. "Explaining the Tunisian Real Exchange: Long Memory versus Structural Breaks," Working Papers 2014-147, Department of Research, Ipag Business School.
  12. Quoreshi, Shahiduzzaman, 2006. "Time Series Modelling Of High Frequency Stock Transaction Data," UmeÃ¥ Economic Studies 675, Umeå University, Department of Economics.
  13. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  14. Bisaglia, Luisa & Gerolimetto, Margherita, 2008. "Forecasting long memory time series when occasional breaks occur," Economics Letters, Elsevier, vol. 98(3), pages 253-258, March.
  15. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
  16. Katsumi Shimotsu, 2006. "Simple (but effective) tests of long memory versus structural breaks," Working Papers 1101, Queen's University, Department of Economics.
  17. Adnan Kasman & Erdost Torun, 2007. "Long Memory in the Turkish Stock Market Return and Volatility," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 13-27.
  18. repec:hal:cesptp:halshs-00185369 is not listed on IDEAS
  19. Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
  20. repec:hal:journl:halshs-00185369 is not listed on IDEAS
  21. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2012. "Predicting BRICS Stock Returns Using ARFIMA Models," Working Papers 201235, University of Pretoria, Department of Economics.
  22. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
  23. Roger Bowden & Jennifer Zhu, 2010. "Multi-scale variation, path risk and long-term portfolio management," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 783-796.
  24. Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: a fractionally integrated SETAR model," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 519-526.
  25. Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," UmeÃ¥ Economic Studies 673, Umeå University, Department of Economics.
  26. Mohamed Boutahar & Gilles Dufrénot & Anne Péguin-Feissolle, 2008. "A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter d t ," Computational Economics, Society for Computational Economics, vol. 31(3), pages 225-241, April.
  27. Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.