Advanced Search
MyIDEAS: Login

Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP

Contents:

Author Info

  • Massimiliano Marcellino
  • Christian Schumacher

Abstract

This paper compares different ways to estimate the current state of the economy using factor models that can handle unbalanced datasets. Due to the different release lags of business cycle indicators, data unbalancedness often emerges at the end of multivariate samples, which is sometimes referred to as the "ragged edge" of the data. Using a large monthly dataset of the German economy, we compare the performance of different factor models in the presence of the ragged edge: static and dynamic principal components based on realigned data, the Expectation-Maximisation (EM) algorithm and the Kalman smoother in a state-space model context. The monthly factors are used to estimate current quarter GDP, called the "nowcast", using different versions of what we call factor-based mixed-data sampling (Factor-MIDAS) approaches. We compare all possible combinations of factor estimation methods and Factor-MIDAS projections with respect to now-cast performance. Additionally, we compare the performance of the nowcast factor models with the performance of quarterly factor models based on time-aggregated and thus balanced data, which neglect the most timely observations of business cycle indicators at the end of the sample. Our empirical findings show that the factor estimation methods don't differ much with respect to nowcasting accuracy. Concerning the projections, the most parsimonious MIDAS projection performs best overall. Finally, quarterly models are in general outperformed by the nowcast factor models that can exploit ragged-edge data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cadmus.iue.it/dspace/bitstream/1814/8087/1/ECO-2008-16.pdf
File Function: main text
Download Restriction: no

Bibliographic Info

Paper provided by European University Institute in its series Economics Working Papers with number ECO2008/16.

as in new window
Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:eui:euiwps:eco2008/16

Contact details of provider:
Postal: Badia Fiesolana, Via dei Roccettini, 9, 50016 San Domenico di Fiesole (FI) Italy
Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/
More information through EDIRC

Related research

Keywords: nowcasting; business cycle; large factor models; mixed-frequency data; missing values; MIDAS;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
  2. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 0674, European Central Bank.
  3. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
  4. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  5. D''Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2007. "(Un)Predictability and Macroeconomic Stability," CEPR Discussion Papers 6594, C.E.P.R. Discussion Papers.
  6. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, 07.
  7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  8. Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  9. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  10. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  11. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  12. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  13. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer, vol. 90(1), pages 27-42, March.
  14. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  15. Banbura, Marta & Rünstler, Gerhard, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 0751, European Central Bank.
  16. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2007. "New Eurocoin: Tracking Economic Growth in Real Time," Temi di discussione (Economic working papers) 631, Bank of Italy, Economic Research and International Relations Area.
  17. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank, Research Centre.
  18. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
  19. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  20. Schumacher, Christian & Breitung, Jörg, 2006. "Real-time forecasting of GDP based on a large factor model with monthly and quarterly data," Discussion Paper Series 1: Economic Studies 2006,33, Deutsche Bundesbank, Research Centre.
  21. D'Agostino, Antonello & Giannone, Domenico, 2006. "Comparing Alternative Predictors Based on Large-Panel Factor Models," Research Technical Papers 14/RT/06, Central Bank of Ireland.
  22. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  23. David Hendry & Guillaume Chevillon, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Series Working Papers 196, University of Oxford, Department of Economics.
  24. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  25. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  26. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  27. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  28. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  29. Kapetanios, George & Marcellino, Massimiliano, 2006. "A Parametric Estimation Method for Dynamic Factor Models of Large Dimensions," CEPR Discussion Papers 5620, C.E.P.R. Discussion Papers.
  30. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
  31. Ralf Brueggemann & Helmut Luetkepohl, 2004. "A Small Monetary System for the Euro Area Based on German Data," Economics Working Papers ECO2004/24, European University Institute.
  32. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  33. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  34. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  35. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  36. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2008/16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marcia Gastaldo).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.