Advanced Search
MyIDEAS: Login

Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information

Contents:

Author Info

  • Massimiliano Marcellino
  • James H. Stock
  • Mark W. Watson

Abstract

This paper investigates time series methods for forecasting four Euro-area wide aggregate variables: real GDP, industrial production, price inflation, and the unemployment rate. We consider two empirical questions arising from this problem. First, is it better to build aggregate Euro-area wide forecasting models for these variables, or are there gains from aggregating country-specific forecasts for the component country variables? Second, are there gains from using information from additional predictors beyond simple univariate time series forecasts, and if so, how large are these gains, and how are these gains best achieved? It turns out that typically there are gains from forecasting these series at the country level, then pooling the forecasts, relative to forecasting at the aggregate level. This suggests that structural macroeconometric modeling of the Euro area is appropriately done at the country-specific level, rather than directly at the aggregate level. Moreover, our simulated out-of-sample forecast experiment provides little evidence that forecasts from multivariate models are more accurate than forecasts from univariate models. If we restrict attention to multivariate models, the forecasts obtained from a dynamic factor model appear to be somewhat more accurate than the other methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.igier.uni-bocconi.it/wp/2001/201.pdf
Download Restriction: no

Bibliographic Info

Paper provided by IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University in its series Working Papers with number 201.

as in new window
Length:
Date of creation:
Date of revision:
Handle: RePEc:igi:igierp:201

Contact details of provider:
Postal: via Rontgen, 1 - 20136 Milano (Italy)
Phone: 0039-02-58363301
Fax: 0039-02-58363302
Web page: http://www.igier.unibocconi.it/

Order Information:
Email:
Web: http://www.igier.unibocconi.it/en/papers/index.htm

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  2. Galí, Jordi & Gertler, Mark & López-Salido, J David, 2001. "European Inflation Dynamics," CEPR Discussion Papers 2684, C.E.P.R. Discussion Papers.
  3. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  4. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  5. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  6. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-89, June.
  7. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  8. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895.
  9. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2000. "Reference Cycles: The NBER Methodology Revisited," CEPR Discussion Papers 2400, C.E.P.R. Discussion Papers.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:igi:igierp:201. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.