Advanced Search
MyIDEAS: Login

New Eurocoin: Tracking Economic Growth in Real Time

Contents:

Author Info

  • Mario Forni

    ()

  • Filippo Altissimo
  • Riccardo Cristadoro
  • Marco Lippi
  • Giovanni Veronese.

Abstract

Removal of short-run dynamics from a stationary time series to isolate the medium to long-run component, can be obtained by a band-pass filter. However, band pass filters are infinite moving averages and can therefore deteriorate at the end of the sample. This is a well-known result in the literature isolating the business cycle in integrated series. We show that the same problem arises with our application to stationary time series. In this paper we develop a method to obtain smoothing of a stationary time series by using only contemporaneous values of a large dataset, so that no end-of-sample deterioration occurs. Our construction is based on a special version of Generalized Principal Components, which is designed to use leading variables in the dataset as proxies for missing future values in the variable of interest. Our method is applied to the construction of New Eurocoin, an indicator of economic activity for the euro area. New Eurocoin is an estimate, in real time, of the medium to long-run component of the euro area GDP growth, which performs equally well within and at the end of the sample. As our dataset is monthly and most of the series are updated with a short delay, we are able to produce a monthly, real-time indicator. An assessment of its performance as an approximation of the medium to long-run GDP growth, both in terms of fitting and turning-point signaling, is provided.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.recent.unimore.it/wp/RECent-wp20.pdf
Download Restriction: no

Bibliographic Info

Paper provided by University of Modena and Reggio E., Dept. of Economics in its series Center for Economic Research (RECent) with number 020.

as in new window
Length: pages 47
Date of creation: May 2008
Date of revision:
Handle: RePEc:mod:recent:020

Contact details of provider:
Web page: http://www.recent.unimore.it/
More information through EDIRC

Related research

Keywords: Coincident Indicator; Band-pass Filter; Large-dataset Factor Models; Generalized Principal Components;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
  2. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-60, June.
  3. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  4. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, 05.
  5. Victor Zarnowitz & Ataman Ozyildirim, 2002. "Time Series Decomposition and Measurement of Business Cycles, Trends and Growth Cycles," NBER Working Papers 8736, National Bureau of Economic Research, Inc.
  6. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
  7. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  8. Forni, Mario & Lippi, Marco, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
  9. Pesaran, M. Hashem & Timmermann, Allan, 2006. "Testing Dependence among Serially Correlated Multi-Category Variables," IZA Discussion Papers 2196, Institute for the Study of Labor (IZA).
  10. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  11. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  12. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
  13. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
  14. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, 03.
  15. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages C62-85, May.
  16. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  17. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  18. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
  19. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64 Elsevier.
  20. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  21. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, 04.
  22. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-65, October.
  23. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
  24. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  25. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  26. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  27. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages F108-F129, 02.
  28. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Lucrezia Reichlin & Giovanni Veronese, 2001. "The construction of coincident and leading indicators for the euro area business cycler of the euro area business cycle," Temi di discussione (Economic working papers) 434, Bank of Italy, Economic Research and International Relations Area.
  29. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  30. Valle e Azevedo, Joao & Koopman, Siem Jan & Rua, Antonio, 2006. "Tracking the Business Cycle of the Euro Area: A Multivariate Model-Based Bandpass Filter," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 278-290, July.
  31. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  32. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
  33. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 0042, European Central Bank.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mod:recent:020. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.