Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components

Contents:

Author Info

  • Proietti, Tommaso

Abstract

The paper estimates a large-scale mixed-frequency dynamic factor model for the euro area, using monthly series along with Gross Domestic Product (GDP) and its main components, obtained from the quarterly national accounts. The latter define broad measures of real economic activity (such as GDP and its decomposition by expenditure type and by branch of activity) that we are willing to include in the factor model, in order to improve its coverage of the economy and thus the representativeness of the factors. The main problem with their inclusion is not one of model consistency, but rather of data availability and timeliness, as the national accounts series are quarterly and are available with a large publication lag. Our model is a traditional dynamic factor model formulated at the monthly frequency in terms of the stationary representation of the variables, which however becomes nonlinear when the observational constraints are taken into account. These are of two kinds: nonlinear temporal aggregation constraints, due to the fact that the model is formulated in terms of the unobserved monthly logarithmic changes, but we observe only the sum of the monthly levels within a quarter, and nonlinear cross-sectional constraints, since GDP and its main components are linked by the national accounts identities, but the series are expressed in chained volumes. The paper provides an exact treatment of the observational constraints and proposes iterative algorithms for estimating the parameters of the factor model and for signal extraction, thereby producing nowcasts of monthly gross domestic product and its main components, as well as measures of their reliability.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/6860/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6860.

as in new window
Length:
Date of creation: 22 Jan 2008
Date of revision:
Handle: RePEc:pra:mprapa:6860

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Dynamic Factor Models; EM algorithm; Non Linear State Space Models; Temporal Disaggregation; Nonlinear Smoothing; Monthly GDP; Chain-linking;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  2. Lucrezia Reichlin & Mario Forni & Marc Hallin & Marco Lippi, 2001. "Coincident and leading indicators for the Euro area," ULB Institutional Repository 2013/10137, ULB -- Universite Libre de Bruxelles.
  3. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  4. Angelini, Elena & Henry, Jérôme & Marcellino, Massimiliano, 2004. "Interpolation and Backdating with A Large Information Set," CEPR Discussion Papers 4533, C.E.P.R. Discussion Papers.
  5. Proietti, Tommaso & Musso, Alberto, 2007. "Growth accounting for the euro area: a structural approach," Working Paper Series 0804, European Central Bank.
  6. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  7. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  8. Marianne Baxter & Robert G. King, 1995. "Measuring Business Cycles Approximate Band-Pass Filters for Economic Time Series," NBER Working Papers 5022, National Bureau of Economic Research, Inc.
  9. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  10. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
  11. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
  12. Schumacher, Christian & Breitung, Jörg, 2006. "Real-time forecasting of GDP based on a large factor model with monthly and quarterly data," Discussion Paper Series 1: Economic Studies 2006,33, Deutsche Bundesbank, Research Centre.
  13. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non-linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300.
  14. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2007. "New Eurocoin: Tracking Economic Growth in Real Time," Temi di discussione (Economic working papers) 631, Bank of Italy, Economic Research and International Relations Area.
  15. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  16. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, 07.
  17. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  18. Andrew Harvey & Chia-Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
  19. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages F108-F129, 02.
  20. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  21. Koopman, S.J.M. & Durbin, J., 1998. "Fast Filtering and Smoothing for Multivariate State Space Models," Discussion Paper 1998-18, Tilburg University, Center for Economic Research.
  22. Riccardo Cristadoro & Mario Forni & Lucrezia Reichlin & Giovanni Veronese, 2005. "A core inflation indicator for the Euro area," ULB Institutional Repository 2013/10131, ULB -- Universite Libre de Bruxelles.
  23. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  24. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  25. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  26. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
  27. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, EconWPA.
  28. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  29. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  30. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Christian Schumacher, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 231(1), pages 28-49, February.
  2. Ángel Cuevas & Enrique M. Quilis & Antoni Espasa, 2011. "Combining benchmarking and chain-linking for short-term regional forecasting," Statistics and Econometrics Working Papers ws114130, Universidad Carlos III, Departamento de Estadística y Econometría.
  3. Bai, Jushan, 2013. "Likelihood approach to dynamic panel models with interactive effects," MPRA Paper 50267, University Library of Munich, Germany.
  4. Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2010. "Nowcasting," Working Paper Series 1275, European Central Bank.
  5. Moauro, Filippo, 2010. "A monthly indicator of employment in the euro area: real time analysis of indirect estimates," MPRA Paper 27797, University Library of Munich, Germany, revised 30 Dec 2010.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6860. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.