Advanced Search
MyIDEAS: Login to save this paper or follow this series

Averaging forecasts from VARs with uncertain instabilities

Contents:

Author Info

  • Todd E. Clark
  • Michael W. McCracken

Abstract

A body of recent work suggests commonly–used VAR models of output, inflation, and interest rates may be prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting methods might be used to improve the accuracy of forecasts from a VAR. These methods include using different approaches to lag selection, different observation windows for estimation, (over-) differencing, intercept correction, stochastically time–varying parameters, break dating, discounted least squares, Bayesian shrinkage, and detrending of inflation and interest rates. Although each individual method could be useful, the uncertainty inherent in any single representation of instability could mean that combining forecasts from the entire range of VAR estimates will further improve forecast accuracy. Focusing on models of U.S. output, prices, and interest rates, this paper examines the effectiveness of combination in improving VAR forecasts made with real–time data. The combinations include simple averages, medians, trimmed means, and a number of weighted combinations, based on: Bates-Granger regressions, factor model estimates, regressions involving just forecast quartiles, Bayesian model averaging, and predictive least squares–based weighting. Our goal is to identify those approaches that, in real time, yield the most accurate forecasts of these variables. We use forecasts from simple univariate time series models and the Survey of Professional Forecasters as benchmarks.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.kansascityfed.org/Publicat/Reswkpap/PDF/rwp06-12.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of Kansas City in its series Research Working Paper with number RWP 06-12.

as in new window
Length:
Date of creation: 2006
Date of revision:
Handle: RePEc:fip:fedkrw:rwp06-12

Contact details of provider:
Postal: 1 Memorial Drive, Kansas City, MO 64198-0001
Phone: (816) 881-2254
Web page: http://www.kansascityfed.org/
More information through EDIRC

Order Information:
Email:

Related research

Keywords: Economic forecasting ; Vector autoregression;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Michael W. McCracken & Todd E. Clark, 2003. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Computing in Economics and Finance 2003 183, Society for Computational Economics.
  2. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-94, Sept.-Oct.
  3. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, 06.
  4. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  5. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
  6. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
  7. Anthony Garratt & Gary Koop & Shaun P. Vahey, 2006. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Reserve Bank of New Zealand Discussion Paper Series DP2006/02, Reserve Bank of New Zealand.
  8. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  9. Gary Koop & Simon M. Potter & Rodney W. Strachan, 2008. "Re-Examining the Consumption-Wealth Relationship: The Role of Model Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 341-367, 03.
  10. D'Agostino, Antonello & Domenico, Giannone & Surico, Paolo, 2006. "(Un)Predictability and Macroeconomic Stability," Research Technical Papers 5/RT/06, Central Bank of Ireland.
  11. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
  12. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging using Predictive Measures," Working Paper Series 191, Sveriges Riksbank (Central Bank of Sweden).
  13. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
  14. Timothy Cogley & Thomas Sargent, . "Evolving Post-World War II U.S. Inflation Dynamics," Working Papers 2132872, Department of Economics, W. P. Carey School of Business, Arizona State University.
  15. Sharon Kozicki & P.A. Tinsley, 2002. "Alternative sources of the lag dynamics of inflation," Research Working Paper RWP 02-12, Federal Reserve Bank of Kansas City.
  16. Hallman, Jeffrey J & Porter, Richard D & Small, David H, 1991. "Is the Price Level Tied to the M2 Monetary Aggregate in the Long Run?," American Economic Review, American Economic Association, vol. 81(4), pages 841-58, September.
  17. Beyer, Andreas & Farmer, Roger E.A., 2007. "Natural rate doubts," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 797-825, March.
  18. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
  19. Marco Del Negro & Frank Schorfheide, 2002. "Priors from general equilibrium models for VARs," Working Paper 2002-14, Federal Reserve Bank of Atlanta.
  20. Tor Jacobson & Per Jansson & Anders Vredin & Anders Warne, 2001. "Monetary policy analysis and inflation targeting in a small open economy: a VAR approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 487-520.
  21. Arturo Estrella & Jeffrey C. Fuhrer, 2003. "Monetary Policy Shifts and the Stability of Monetary Policy Models," The Review of Economics and Statistics, MIT Press, vol. 85(1), pages 94-104, February.
  22. Todd E. Clark & Michael W. McCracken, 2008. "Tests of equal predictive ability with real-time data," Working Papers 2008-029, Federal Reserve Bank of St. Louis.
  23. Kapetanios, G. & Labhard, V. & Price, S., 2007. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Working Papers 07/15, Department of Economics, City University London.
  24. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  25. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
  26. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  27. Jean Boivin, 2005. "Has US Monetary Policy Changed? Evidence from Drifting Coefficients and Real-Time Data," NBER Working Papers 11314, National Bureau of Economic Research, Inc.
  28. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  29. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and estimating multiple change-point models with an unknown number of change points," Staff Reports 196, Federal Reserve Bank of New York.
  30. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, 05.
  31. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  32. Timothy Cogley & Thomas Sargent, . "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
  33. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  34. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  35. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, School of Economics and Management, University of Aarhus.
  36. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
  37. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
  38. Robertson, John C & Tallman, Ellis W, 2001. "Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 324-30, July.
  39. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
  40. Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer, vol. 1(2), pages 91-121.
  41. Flint Brayton & Eileen Mauskopf & David Reifschneider & Peter Tinsley & John Williams, 1997. "The role of expectations in the FRB/US macroeconomic model," Federal Reserve Bulletin, Board of Governors of the Federal Reserve System (U.S.), issue Apr, pages 227-245.
  42. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, 02.
  43. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
  44. Kozicki, Sharon & Hoffman, Barak, 2004. "Rounding Error: A Distorting Influence on Index Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(3), pages 319-38, June.
  45. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  46. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  47. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  48. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  49. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  50. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:rwp06-12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lu Dayrit).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.