IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Endogenized technological learning in an energy systems model"

by Sabine Messner

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
  2. Malte Schwoon, 2006. "Learning-by-doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles," Working Papers FNU-112, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
  3. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
  4. repec:pri:cepsud:94bradford is not listed on IDEAS
  5. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  6. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  7. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
  8. Lucas Bretschger & Roger Ramer & Florentine Schwark, 2010. "Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model with Heterogeneous Capital," CER-ETH Economics working paper series 10/129, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  9. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
  10. Valentina Bosetti & Carlo Carraro & Marzio Galeotti, 2006. "Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control," Working Papers 2006.2, Fondazione Eni Enrico Mattei.
  11. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
  12. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  13. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
  14. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
  15. repec:pit:wpaper:534 is not listed on IDEAS
  16. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
  17. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
  18. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
  19. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
  20. Reyer Gerlagh & Marjan W. Hofkes, 2004. "Time Profile of Climate Change Stabilization Policy," Working Papers 2004.139, Fondazione Eni Enrico Mattei.
  21. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  22. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
  23. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
  24. Colpier, Ulrika Claeson & Cornland, Deborah, 2002. "The economics of the combined cycle gas turbine--an experience curve analysis," Energy Policy, Elsevier, vol. 30(4), pages 309-316, March.
  25. Blazejczak, Jürgen & Braun, Frauke G. & Edler, Dietmar & Schill, Wolf-Peter, 2014. "Economic effects of renewable energy expansion: A model-based analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1070-1080.
  26. Eva Schmid & Brigitte Knopf & Nico Bauer, 2012. "REMIND-D: A Hybrid Energy-Economy Model of Germany," Working Papers 2012.09, Fondazione Eni Enrico Mattei.
  27. Castelnuovo, Efrem & Galeotti, Marzio & Gambarelli, Gretel & Vergalli, Sergio, 2005. "Learning-by-Doing vs. Learning by Researching in a model of climate change policy analysis," Ecological Economics, Elsevier, vol. 54(2-3), pages 261-276, August.
  28. Karolina Safarzyńska & Jeroen Bergh, 2013. "An evolutionary model of energy transitions with interactive innovation-selection dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 271-293, April.
  29. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
  30. repec:eco:journ2:2017-02-20 is not listed on IDEAS
  31. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  32. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
  33. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
  34. Manne, Alan S. & Barreto, Leonardo, 2004. "Learn-by-doing and carbon dioxide abatement," Energy Economics, Elsevier, vol. 26(4), pages 621-633, July.
  35. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
  36. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
  37. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  38. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  39. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
  40. Akimoto, Keigo & Tomoda, Toshimasa & Fujii, Yasumasa, 2005. "Development of a mixed integer programming model for technology development strategy and its application to IGCC technologies," Energy, Elsevier, vol. 30(7), pages 1176-1191.
  41. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
  42. Florentine Schwark, 2010. "Economics of Endogenous Technical Change in CGE Models - The Role of Gains from Specialization," CER-ETH Economics working paper series 10/130, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  43. Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
  44. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
  45. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
  46. David Popp, 2004. "ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models," NBER Working Papers 10285, National Bureau of Economic Research, Inc.
  47. Shafiei, Ehsan & Saboohi, Yadollah & Ghofrani, Mohammad B., 2009. "Impact of innovation programs on development of energy system: Case of Iranian electricity-supply system," Energy Policy, Elsevier, vol. 37(6), pages 2221-2230, June.
  48. Martinsen, Thomas, 2011. "Technology learning in a small open economy--The systems, modelling and exploiting the learning effect," Energy Policy, Elsevier, vol. 39(5), pages 2361-2372, May.
  49. Springer, Urs, 2003. "The market for tradable GHG permits under the Kyoto Protocol: a survey of model studies," Energy Economics, Elsevier, vol. 25(5), pages 527-551, September.
  50. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
  51. Kosugi, Takanobu, 2013. "A paradox regarding economic support to deploy renewable energy technologies," Energy Policy, Elsevier, vol. 61(C), pages 1111-1115.
  52. GERLAGH Reyer & LISE Wietze, "undated". "Induced Technological Change under Carbon Taxes," EcoMod2003 330700062, EcoMod.
  53. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  54. Laurie Michaelis, 1998. "Economic and Technological Development in Climate Scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 231-261, December.
  55. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
  56. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
  57. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
  58. David Popp, 2004. "R&D Subsidies and Climate Policy: Is There a "Free Lunch"?," NBER Working Papers 10880, National Bureau of Economic Research, Inc.
  59. Alam Hossain Mondal, Md. & Mathur, Jyotirmay & Denich, Manfred, 2011. "Impacts of CO2 emission constraints on technology selection and energy resources for power generation in Bangladesh," Energy Policy, Elsevier, vol. 39(4), pages 2043-2050, April.
  60. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
  61. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo Group Munich.
  62. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
  63. Sergey Paltsev, 2016. "Energy Scenarios: The Value and Limits of Scenario Analysis," EcoMod2016 9371, EcoMod.
  64. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  65. Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
  66. David Popp & Nidhi Santen & Karen Fisher-Vanden & Mort Webster, 2012. "Technology Variation vs. R&D Uncertainty: What Matters Most for Energy Patent Success?," NBER Working Papers 17792, National Bureau of Economic Research, Inc.
  67. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestration: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
  68. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
  69. Marzio Galeotti & Carlo Carraro, 2004. "Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model," Working Papers 2004.152, Fondazione Eni Enrico Mattei.
  70. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
  71. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
  72. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
  73. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
  74. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  75. Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
  76. Martinsen, Thomas, 2011. "Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models," Energy Policy, Elsevier, vol. 39(6), pages 3327-3336, June.
  77. Wonglimpiyarat, Jarunee, 2010. "Technological change of the energy innovation system: From oil-based to bio-based energy," Applied Energy, Elsevier, vol. 87(3), pages 749-755, March.
  78. Malte Schwoon, 2006. "A Tool to Optimize the Initial Distribution of Hydrogen Filling Stations," Working Papers FNU-110, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.