IDEAS home Printed from https://ideas.repec.org/r/spr/joevec/v7y1997i3p291-313.html
   My bibliography  Save this item

Endogenized technological learning in an energy systems model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
  2. Malte Schwoon, 2006. "Learning-by-doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles," Working Papers FNU-112, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
  3. Léo Coppens & Simon Dietz & Frank Venmans, 2024. "Optimal Climate Policy under Exogenous and Endogenous Technical Change: Making Sense of the Different Approaches," CESifo Working Paper Series 11059, CESifo.
  4. repec:pri:cepsud:94bradford is not listed on IDEAS
  5. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  6. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  7. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  8. Lucas Bretschger & Roger Ramer & Florentine Schwark, 2010. "Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model with Heterogeneous Capital," CER-ETH Economics working paper series 10/129, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  9. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
  10. Bosetti, Valentina & Carraro, Carlo & Galeotti, Marzio, 2006. "Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control," Climate Change Modelling and Policy Working Papers 12050, Fondazione Eni Enrico Mattei (FEEM).
  11. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
  12. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
  13. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
  14. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
  15. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
  16. Reyer Gerlagh & Marjan W. Hofkes, 2004. "Time Profile of Climate Change Stabilization Policy," Working Papers 2004.139, Fondazione Eni Enrico Mattei.
  17. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  18. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
  19. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
  20. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
  21. Blazejczak, Jürgen & Braun, Frauke G. & Edler, Dietmar & Schill, Wolf-Peter, 2014. "Economic effects of renewable energy expansion: A model-based analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1070-1080.
  22. Schmid, Eva & Knopf, Brigitte & Bauer, Nico, 2012. "REMIND-D: A Hybrid Energy-Economy Model of Germany," Climate Change and Sustainable Development 121911, Fondazione Eni Enrico Mattei (FEEM).
  23. Clas‐Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
  24. Karolina Safarzyńska & Jeroen Bergh, 2013. "An evolutionary model of energy transitions with interactive innovation-selection dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 271-293, April.
  25. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
  26. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  27. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
  28. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
  29. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  30. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  31. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
  32. Akimoto, Keigo & Tomoda, Toshimasa & Fujii, Yasumasa, 2005. "Development of a mixed integer programming model for technology development strategy and its application to IGCC technologies," Energy, Elsevier, vol. 30(7), pages 1176-1191.
  33. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
  34. Florentine Schwark, 2010. "Economics of Endogenous Technical Change in CGE Models - The Role of Gains from Specialization," CER-ETH Economics working paper series 10/130, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  35. Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
  36. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  37. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industrys low carbon future," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  38. David Popp, 2004. "ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models," NBER Working Papers 10285, National Bureau of Economic Research, Inc.
  39. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  40. Martinsen, Thomas, 2011. "Technology learning in a small open economy--The systems, modelling and exploiting the learning effect," Energy Policy, Elsevier, vol. 39(5), pages 2361-2372, May.
  41. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
  42. Kosugi, Takanobu, 2013. "A paradox regarding economic support to deploy renewable energy technologies," Energy Policy, Elsevier, vol. 61(C), pages 1111-1115.
  43. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  44. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
  45. David Popp, 2004. "R&D Subsidies and Climate Policy: Is There a "Free Lunch"?," NBER Working Papers 10880, National Bureau of Economic Research, Inc.
  46. Alam Hossain Mondal, Md. & Mathur, Jyotirmay & Denich, Manfred, 2011. "Impacts of CO2 emission constraints on technology selection and energy resources for power generation in Bangladesh," Energy Policy, Elsevier, vol. 39(4), pages 2043-2050, April.
  47. Nemet, Gregory F., 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Climate Change Modelling and Policy Working Papers 12051, Fondazione Eni Enrico Mattei (FEEM).
  48. Sergey Paltsev, 2016. "Energy Scenarios: The Value and Limits of Scenario Analysis," EcoMod2016 9371, EcoMod.
  49. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  50. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
  51. Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
  52. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
  53. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  54. Mathias Mier & Jacqueline Adelowo & Valeriya Azarova, 2022. "Endogenous Technological Change in Power Markets," ifo Working Paper Series 373, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  55. Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
  56. Popp, David & Santen, Nidhi & Fisher-Vanden, Karen & Webster, Mort, 2013. "Technology variation vs. R&D uncertainty: What matters most for energy patent success?," Resource and Energy Economics, Elsevier, vol. 35(4), pages 505-533.
  57. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).
  58. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
  59. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  60. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
  61. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
  62. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  63. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
  64. Douglas Hanley & Daron Acemoglu & Ufuk Akcigit & William Kerr, 2014. "Transition to Clean Technology," Working Paper 534, Department of Economics, University of Pittsburgh, revised Jan 2014.
  65. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
  66. Colpier, Ulrika Claeson & Cornland, Deborah, 2002. "The economics of the combined cycle gas turbine--an experience curve analysis," Energy Policy, Elsevier, vol. 30(4), pages 309-316, March.
  67. Castelnuovo, Efrem & Galeotti, Marzio & Gambarelli, Gretel & Vergalli, Sergio, 2005. "Learning-by-Doing vs. Learning by Researching in a model of climate change policy analysis," Ecological Economics, Elsevier, vol. 54(2-3), pages 261-276, August.
  68. Svetlana Valerievna Ratner & Vladislav Valerievich Klochkov, 2017. "Scenario Forecast for Wind Turbine Manufacturing in Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 144-151.
  69. Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
  70. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
  71. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
  72. Manne, Alan S. & Barreto, Leonardo, 2004. "Learn-by-doing and carbon dioxide abatement," Energy Economics, Elsevier, vol. 26(4), pages 621-633, July.
  73. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
  74. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
  75. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
  76. Shafiei, Ehsan & Saboohi, Yadollah & Ghofrani, Mohammad B., 2009. "Impact of innovation programs on development of energy system: Case of Iranian electricity-supply system," Energy Policy, Elsevier, vol. 37(6), pages 2221-2230, June.
  77. Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
  78. Springer, Urs, 2003. "The market for tradable GHG permits under the Kyoto Protocol: a survey of model studies," Energy Economics, Elsevier, vol. 25(5), pages 527-551, September.
  79. Reyer Gerlagh & Wietze Lise, 2003. "Induced Technological Change Under Carbon Taxes," Working Papers 2003.84, Fondazione Eni Enrico Mattei.
  80. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  81. Laurie Michaelis, 1998. "Economic and Technological Development in Climate Scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 231-261, December.
  82. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
  83. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
  84. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo.
  85. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
  86. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
  87. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
  88. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
  89. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
  90. Marzio Galeotti & Carlo Carraro, 2004. "Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model," Working Papers 2004.152, Fondazione Eni Enrico Mattei.
  91. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
  92. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
  93. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
  94. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
  95. Martinsen, Thomas, 2011. "Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models," Energy Policy, Elsevier, vol. 39(6), pages 3327-3336, June.
  96. Wonglimpiyarat, Jarunee, 2010. "Technological change of the energy innovation system: From oil-based to bio-based energy," Applied Energy, Elsevier, vol. 87(3), pages 749-755, March.
  97. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
  98. Malte Schwoon, 2006. "A Tool to Optimize the Initial Distribution of Hydrogen Filling Stations," Working Papers FNU-110, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.