IDEAS home Printed from https://ideas.repec.org/p/ekd/003307/330700062.html
   My bibliography  Save this paper

Induced Technological Change under Carbon Taxes

Author

Listed:
  • GERLAGH Reyer
  • LISE Wietze

Abstract

We develop an economic partial equilibrium model for energy supply and demand with capital and labor as production factors, and endogenous technological change through learning by research and learning by doing. Our model reproduces the learning curve typical for (bottom-up) energy system models. The model also produces an endogenous S-curved transition from fossil fuel energy sources to carbon-free energy sources over the coming two centuries. We use the model to study changes in fossil fuel and carbon-free energy use and carbon dioxide emissions induced by carbon taxes. It is shown that induced technological change accelerates the substitution of carbon-free energy for fossil fuels substantially, and can increase by factor 5 the cumulative emission reductions achieved through a carbon tax over the period 2000-2100.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • GERLAGH Reyer & LISE Wietze, "undated". "Induced Technological Change under Carbon Taxes," EcoMod2003 330700062, EcoMod.
  • Handle: RePEc:ekd:003307:330700062
    as

    Download full text from publisher

    File URL: http://www.ecomod.net/sites/default/files/document-conference/ecomod2003/Lise.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bovenberg, A Lans & Smulders, Sjak A, 1996. "Transitional Impacts of Environmental Policy in an Endogenous Growth Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(4), pages 861-893, November.
    2. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    3. F. Butter & M. Hofkes, 1995. "Sustainable development with extractive and non-extractive use of the environment in production," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(4), pages 341-358, December.
    4. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    5. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
    6. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    7. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    8. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreaux, Michel & Ricci, Francesco, 2005. "The simple analytics of developing resources from resources," Resource and Energy Economics, Elsevier, vol. 27(1), pages 41-63, January.
    2. Otto, Vincent M. & Loschel, Andreas & Dellink, Rob, 2007. "Energy biased technical change: A CGE analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 137-158, May.
    3. Bosetti, Valentina & Carraro, Carlo & Galeotti, Marzio, 2006. "Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control," Climate Change Modelling and Policy Working Papers 12050, Fondazione Eni Enrico Mattei (FEEM).
    4. Zon, Adriaan van & Lontzek, Thomas, 2005. "A ‘putty-practically-clay’ vintage model with R&D driven biases in energy-saving technical change," Research Memorandum 006, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    5. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    6. David Popp, 2004. "ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models," NBER Working Papers 10285, National Bureau of Economic Research, Inc.
    7. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    8. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    9. Marzio Galeotti & Carlo Carraro, 2004. "Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model," Working Papers 2004.152, Fondazione Eni Enrico Mattei.
    10. Reyer Gerlagh, 2004. "A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings," Working Papers 2004.128, Fondazione Eni Enrico Mattei.

    More about this item

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:003307:330700062. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Theresa Leary). General contact details of provider: http://edirc.repec.org/data/ecomoea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.