IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp1111-1115.html
   My bibliography  Save this article

A paradox regarding economic support to deploy renewable energy technologies

Author

Listed:
  • Kosugi, Takanobu

Abstract

From an economic viewpoint, a larger reduction in the level of economic support to facilitate renewable energy installations, e.g., the purchase price of renewable electricity under a feed-in tariff scheme, is not necessarily rational in accordance with a larger decline in the observed cost of the installation, if the expected cost decline of the renewable technology is to be revised in response to the newest statistical data observed during each passing time period. This paper demonstrates this point through an analysis of a case of Japanese photovoltaic power generation deployment.

Suggested Citation

  • Kosugi, Takanobu, 2013. "A paradox regarding economic support to deploy renewable energy technologies," Energy Policy, Elsevier, vol. 61(C), pages 1111-1115.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1111-1115
    DOI: 10.1016/j.enpol.2013.06.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    2. Ayoub, Nasser & Yuji, Naka, 2012. "Governmental intervention approaches to promote renewable energies—Special emphasis on Japanese feed-in tariff," Energy Policy, Elsevier, vol. 43(C), pages 191-201.
    3. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    4. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    5. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    2. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    3. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    4. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    5. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    6. Patricia Milanés-Montero & Alberto Arroyo-Farrona & Esteban Pérez-Calderón, 2018. "Assessment of the Influence of Feed-In Tariffs on the Profitability of European Photovoltaic Companies," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    7. Shrimali, Gireesh & Agarwal, Navin & Donovan, Charles, 2020. "Drivers of solar deployment in India: A state-level econometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    9. Li, Shin-Je & Chang, Ting-Huan & Chang, Ssu-Li, 2017. "The policy effectiveness of economic instruments for the photovoltaic and wind power development in the European Union," Renewable Energy, Elsevier, vol. 101(C), pages 660-666.
    10. García Redondo, Antonio José & Román Collado, Rocío, 2014. "An economic valuation of renewable electricity promoted by feed-in system in Spain," Renewable Energy, Elsevier, vol. 68(C), pages 51-57.
    11. Hipp, Ann & Binz, Christian, 2020. "Firm survival in complex value chains and global innovation systems: Evidence from solar photovoltaics," Research Policy, Elsevier, vol. 49(1).
    12. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    13. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    14. Setiawan, Andri D. & Dewi, Marmelia P. & Jafino, Bramka Arga & Hidayatno, Akhmad, 2022. "Evaluating feed-in tariff policies on enhancing geothermal development in Indonesia," Energy Policy, Elsevier, vol. 168(C).
    15. Schaffer, Lena Maria & Bernauer, Thomas, 2014. "Explaining government choices for promoting renewable energy," Energy Policy, Elsevier, vol. 68(C), pages 15-27.
    16. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    17. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    18. Burtt, D. & Dargusch, P., 2015. "The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions," Applied Energy, Elsevier, vol. 148(C), pages 439-448.
    19. Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
    20. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1111-1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.