IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120304287.html
   My bibliography  Save this article

Drivers of solar deployment in India: A state-level econometric analysis

Author

Listed:
  • Shrimali, Gireesh
  • Agarwal, Navin
  • Donovan, Charles

Abstract

India has ambitious solar energy targets of 100 GW by 2022, including 60 GW at large-scale solar and 40 GW at small-scale solar. While India has made considerable progress in meeting these targets, with 22 GW of solar deployment in 2018, it has a long way to go. Given that solar deployment in India is now largely driven by states, this study strives to understand state-level drivers for solar deployment in India, so as to inform future policy making for reaching India's solar targets. Using econometric techniques – a time series cross sectional regression with fixed effects – over a panel dataset over 11 years (2009–2019) of Indian states, it explores policy, economic, and structural drivers of solar deployment. The key results indicate the importance of two policies – the Renewable Purchase Obligations and Solar Parks – in reaching India's solar target. It may be postulated that these learnings would also be useful for other developing countries with significant solar ambitions. Further, while no further evidence of policy effectiveness is found, more results are expected to emerge as access to more and better data becomes available.

Suggested Citation

  • Shrimali, Gireesh & Agarwal, Navin & Donovan, Charles, 2020. "Drivers of solar deployment in India: A state-level econometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304287
    DOI: 10.1016/j.rser.2020.110137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    2. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    3. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    4. Shukla, Akash Kumar & Sudhakar, K. & Baredar, Prashant & Mamat, Rizalman, 2018. "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3314-3322.
    5. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    6. Gallego-Castillo, Cristobal & Victoria, Marta, 2015. "Cost-free feed-in tariffs for renewable energy deployment in Spain," Renewable Energy, Elsevier, vol. 81(C), pages 411-420.
    7. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    8. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    9. Shrimali, Gireesh & Jenner, Steffen, 2013. "The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis," Renewable Energy, Elsevier, vol. 60(C), pages 679-690.
    10. Matisoff, Daniel C. & Johnson, Erik P., 2017. "The comparative effectiveness of residential solar incentives," Energy Policy, Elsevier, vol. 108(C), pages 44-54.
    11. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    12. Rathore, Pushpendra Kumar Singh & Rathore, Shailendra & Pratap Singh, Rudra & Agnihotri, Sugandha, 2018. "Solar power utility sector in india: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2703-2713.
    13. Gireesh Shrimali, Gabriel Chan, Steffen Jenner, Felix Groba and Joe Indvik, 2015. "Evaluating Renewable Portfolio Standards for In-State Renewable Deployment: Accounting for Policy Heterogeneity," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    14. Shrimali, Gireesh & Sahoo, Anshuman, 2014. "Has India׳s Solar Mission increased the deployment of domestically produced solar modules?," Energy Policy, Elsevier, vol. 69(C), pages 501-509.
    15. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    16. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
    17. Sahoo, Anshuman & Shrimali, Gireesh, 2013. "The effectiveness of domestic content criteria in India's Solar Mission," Energy Policy, Elsevier, vol. 62(C), pages 1470-1480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying, Zhou & Xin-gang, Zhao & Lei, Xu, 2022. "Supply side incentive under the Renewable Portfolio Standards: A perspective of China," Renewable Energy, Elsevier, vol. 193(C), pages 505-518.
    2. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    2. Ryan, Alexander Joel & Donou-Adonsou, Ficawoyi & Calkins, Lindsay Noble, 2019. "Subsidizing the sun: The impact of state policies on electricity generated from solar photovoltaic," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 1-10.
    3. Valérie Mignon & Margaux Escoffier & Emmanuel Hache & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," EconomiX Working Papers 2019-28, University of Paris Nanterre, EconomiX.
    4. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    5. Chu, Ling & Takeuchi, Kenji, 2022. "The non-operating solar projects: Examining the impact of the feed-in tariff amendment in Japan," Energy Policy, Elsevier, vol. 160(C).
    6. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    7. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    8. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    9. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    10. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    11. Dong, Changgui & Zhou, Runmin & Li, Jiaying, 2021. "Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China," Applied Energy, Elsevier, vol. 281(C).
    12. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    13. Lemay, Amélie C. & Wagner, Sigurd & Rand, Barry P., 2023. "Current status and future potential of rooftop solar adoption in the United States," Energy Policy, Elsevier, vol. 177(C).
    14. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    15. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    16. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    17. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    18. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    19. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    20. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.