IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04141866.html
   My bibliography  Save this paper

Determinants of investments in solar photovoltaic: Do oil prices really matter?

Author

Listed:
  • Margaux Escoffier

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Hache

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Valérie Mignon

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Anthony Paris

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper investigates the determinants of solar photovoltaic (PV) deployment in the electricity mix for a panel of OECD and BRICS countries from 1997 to 2016 by paying particular attention to the impact of oil market conditions. Relying on a nonlinear, regime-switching specification, we show that rising oil prices stimulate PV deployment only if their growth rate is important, above 6.7%. Although we find that various other determinants matter—with the influence of some of them depending on the situation on the oil market—public policies play a crucial role. In particular, our findings show that feed-in-tariffs should be encouraged to ensure a continuous fight against climate change, whatever the dynamics followed by oil prices.

Suggested Citation

  • Margaux Escoffier & Emmanuel Hache & Valérie Mignon & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," Working Papers hal-04141866, HAL.
  • Handle: RePEc:hal:wpaper:hal-04141866
    Note: View the original document on HAL open archive server: https://hal.science/hal-04141866
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04141866/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi & Tomoda, Toshimasa, 2008. "Impact assessment of the increase in fossil fuel prices on the global energy system, with and without CO2 concentration stabilization," Energy Policy, Elsevier, vol. 36(9), pages 3477-3484, September.
    2. António Marques & José Fuinhas & José Manso, 2011. "A Quantile Approach to Identify Factors Promoting Renewable Energy in European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 351-366, July.
    3. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    4. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    5. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    6. van Rooijen, Sascha N.M. & van Wees, Mark T., 2006. "Green electricity policies in the Netherlands: an analysis of policy decisions," Energy Policy, Elsevier, vol. 34(1), pages 60-71, January.
    7. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    8. Zhao, Yong & Tang, Kam Ki & Wang, Li-li, 2013. "Do renewable electricity policies promote renewable electricity generation? Evidence from panel data," Energy Policy, Elsevier, vol. 62(C), pages 887-897.
    9. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    10. Shah, Imran Hussain & Hiles, Charlie & Morley, Bruce, 2018. "How do oil prices, macroeconomic factors and policies affect the market for renewable energy?," Applied Energy, Elsevier, vol. 215(C), pages 87-97.
    11. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    12. Awerbuch, Shimon & Sauter, Raphael, 2006. "Exploiting the oil-GDP effect to support renewables deployment," Energy Policy, Elsevier, vol. 34(17), pages 2805-2819, November.
    13. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    14. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    15. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    16. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    17. Vielle, Marc & Viguier, Laurent, 2007. "On the climate change effects of high oil prices," Energy Policy, Elsevier, vol. 35(2), pages 844-849, February.
    18. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    19. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    20. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    21. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    22. Khan, Muhammad Imran & Yasmeen, Tabassam & Shakoor, Abdul & Khan, Niaz Bahadur & Muhammad, Riaz, 2017. "2014 oil plunge: Causes and impacts on renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 609-622.
    23. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    24. Dalby, Peder A.O. & Gillerhaugen, Gisle R. & Hagspiel, Verena & Leth-Olsen, Tord & Thijssen, Jacco J.J., 2018. "Green investment under policy uncertainty and Bayesian learning," Energy, Elsevier, vol. 161(C), pages 1262-1281.
    25. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    26. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    27. A.A. Romano & G. Scandurra, 2016. "Divergences in the determinants of investments in renewable energy sources: hydroelectric vs. other renewable sources," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(13), pages 2363-2376, October.
    28. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    29. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    30. Olivier J. Blanchard & Jordi Galí, 2007. "The Macroeconomic Effects of Oil Price Shocks: Why Are the 2000s so Different from the 1970s?," NBER Chapters, in: International Dimensions of Monetary Policy, pages 373-421, National Bureau of Economic Research, Inc.
    31. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    32. Chang, Ting-Huan & Huang, Chien-Ming & Lee, Ming-Chih, 2009. "Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries," Energy Policy, Elsevier, vol. 37(12), pages 5796-5802, December.
    33. Gan, Lin & Eskeland, Gunnar S. & Kolshus, Hans H., 2007. "Green electricity market development: Lessons from Europe and the US," Energy Policy, Elsevier, vol. 35(1), pages 144-155, January.
    34. Masini, Andrea & Menichetti, Emanuela, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 510-524.
    35. Bird, Lori & Bolinger, Mark & Gagliano, Troy & Wiser, Ryan & Brown, Matthew & Parsons, Brian, 2005. "Policies and market factors driving wind power development in the United States," Energy Policy, Elsevier, vol. 33(11), pages 1397-1407, July.
    36. Brown, Stephen P. A. & Yucel, Mine K., 2002. "Energy prices and aggregate economic activity: an interpretative survey," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 193-208.
    37. Masini, Andrea & Menichetti , Emanuela, 2013. "Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers," HEC Research Papers Series 976, HEC Paris.
    38. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2018. "Determinants of renewable energy development in the EU countries. A 20-year perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 918-934.
    39. Olivier J. Blanchard & Jordi Gali, 2007. "The Macroeconomic Effects of Oil Shocks: Why are the 2000s So Different from the 1970s?," NBER Working Papers 13368, National Bureau of Economic Research, Inc.
    40. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    41. Rickerson, Wilson H. & Sawin, Janet L. & Grace, Robert C., 2007. "If the Shoe FITs: Using Feed-in Tariffs to Meet U.S. Renewable Electricity Targets," The Electricity Journal, Elsevier, vol. 20(4), pages 73-86, May.
    42. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    43. Shrimali, Gireesh & Jenner, Steffen, 2013. "The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis," Renewable Energy, Elsevier, vol. 60(C), pages 679-690.
    44. van Ruijven, Bas & van Vuuren, Detlef P., 2009. "Oil and natural gas prices and greenhouse gas emission mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4797-4808, November.
    45. Marques, António Cardoso & Fuinhas, José Alberto, 2011. "Drivers promoting renewable energy: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1601-1608, April.
    46. Fouquet, Doerte & Johansson, Thomas B., 2008. "European renewable energy policy at crossroads--Focus on electricity support mechanisms," Energy Policy, Elsevier, vol. 36(11), pages 4079-4092, November.
    47. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    48. Wang, Yan, 2006. "Renewable electricity in Sweden: an analysis of policy and regulations," Energy Policy, Elsevier, vol. 34(10), pages 1209-1220, July.
    49. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    50. Eyraud, Luc & Clements, Benedict & Wane, Abdoul, 2013. "Green investment: Trends and determinants," Energy Policy, Elsevier, vol. 60(C), pages 852-865.
    51. Cadoret, Isabelle & Padovano, Fabio, 2016. "The political drivers of renewable energies policies," Energy Economics, Elsevier, vol. 56(C), pages 261-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebeling Antoine, 2022. "European investment Bank loan appraisal, the EU climate bank ?," Working Papers of BETA 2022-10, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    2. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    3. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    4. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    5. Mac Domhnaill, Ciarán & Ryan, Lisa, 2020. "Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union," Renewable Energy, Elsevier, vol. 154(C), pages 955-965.
    6. Fadly, Dalia, 2019. "Low-carbon transition: Private sector investment in renewable energy projects in developing countries," World Development, Elsevier, vol. 122(C), pages 552-569.
    7. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    8. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    9. Carfora, A. & Pansini, R.V. & Scandurra, G., 2021. "The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects," Energy Policy, Elsevier, vol. 149(C).
    10. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    11. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    12. Marques, António Cardoso & Fuinhas, José Alberto, 2011. "Drivers promoting renewable energy: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1601-1608, April.
    13. Alessandro Marra & Emiliano Colantonio, 2022. "The institutional and socio-technical determinants of renewable energy production in the EU: implications for policy," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(2), pages 267-299, June.
    14. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    15. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    16. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    17. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    18. Kassouri, Yacouba & Altuntaş, Mehmet & Alola, Andrew Adewale, 2022. "The contributory capacity of natural capital to energy transition in the European Union," Renewable Energy, Elsevier, vol. 190(C), pages 617-629.
    19. Bersalli, Germán & Menanteau, Philippe & El-Methni, Jonathan, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.

    More about this item

    Keywords

    Solar photovoltaic; Renewables deployment; Oil prices; Panel smooth transition regression;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04141866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.