IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v177y2023ics0301421523001568.html
   My bibliography  Save this article

Current status and future potential of rooftop solar adoption in the United States

Author

Listed:
  • Lemay, Amélie C.
  • Wagner, Sigurd
  • Rand, Barry P.

Abstract

We utilize a dataset that measures existing rooftop solar installations and classifies rooftops in terms of insolation, azimuth angle and pitch, shading, and size, from aerial imagery last updated in 2017. Analysis of these data reveals that rooftop solar adoption, defined as the number of buildings with existing photovoltaic (PV) installations divided by the total number of eligible buildings, was on average low (mean of 0.93% for 10,417 U.S. ZIP codes). Regarding potential electricity generation, fifteen states could meet their residential electricity demand if panels were placed on all suitable buildings. We conduct a linear regression analysis to elucidate factors that positively (insolation, retail electricity price, Democratic voting fraction, net metering, fraction of science or engineering degree holders) and negatively (fraction of business or education degree holders) correlate with solar adoption. The results suggest anticipated electricity cost savings as a strong motivator for PV adoption, particularly in majority Republican areas, underscoring the importance of programs such as net metering that directly compensate homeowners for generated electricity. Knowledge and installation cost, however, remain barriers. Knowledge campaigns regarding technical aspects of installation and maintenance, as well as increased and stable financial incentives, may stimulate further PV deployment.

Suggested Citation

  • Lemay, Amélie C. & Wagner, Sigurd & Rand, Barry P., 2023. "Current status and future potential of rooftop solar adoption in the United States," Energy Policy, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523001568
    DOI: 10.1016/j.enpol.2023.113571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523001568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    3. O'Shaughnessy, Eric, 2022. "Rooftop solar incentives remain effective for low- and moderate-income adoption," Energy Policy, Elsevier, vol. 163(C).
    4. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    5. van Zalk, John & Behrens, Paul, 2018. "The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S," Energy Policy, Elsevier, vol. 123(C), pages 83-91.
    6. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    7. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    8. Deborah A. Sunter & Sergio Castellanos & Daniel M. Kammen, 2019. "Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity," Nature Sustainability, Nature, vol. 2(1), pages 71-76, January.
    9. Gao, Xue & Zhou, Shan, 2022. "Solar adoption inequality in the U.S.: Trend, magnitude, and solar justice policies," Energy Policy, Elsevier, vol. 169(C).
    10. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    11. Sarzynski, Andrea & Larrieu, Jeremy & Shrimali, Gireesh, 2012. "The impact of state financial incentives on market deployment of solar technology," Energy Policy, Elsevier, vol. 46(C), pages 550-557.
    12. Krasko, Vitaliy A. & Doris, Elizabeth, 2013. "State distributed PV policies: Can low cost (to government) policies have a market impact?," Energy Policy, Elsevier, vol. 59(C), pages 172-181.
    13. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Turan & Ali Durusu & Recep Yumurtaci, 2023. "Driving Urban Energy Sustainability: A Techno-Economic Perspective on Nanogrid Solutions," Energies, MDPI, vol. 16(24), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Best, Rohan & Burke, Paul J., 2023. "Small-scale solar panel adoption by the non-residential sector: The effects of national and targeted policies in Australia," Economic Modelling, Elsevier, vol. 120(C).
    2. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    3. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.
    4. Chelsea Schelly & James C. Letzelter, 2020. "Examining the Key Drivers of Residential Solar Adoption in Upstate New York," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    5. Sun, Bixuan & Sankar, Ashwini, 2022. "The changing effectiveness of financial incentives: Theory and evidence from residential solar rebate programs in California," Energy Policy, Elsevier, vol. 162(C).
    6. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    8. Chu, Ling & Takeuchi, Kenji, 2022. "The non-operating solar projects: Examining the impact of the feed-in tariff amendment in Japan," Energy Policy, Elsevier, vol. 160(C).
    9. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    10. Best, Rohan & Marrone, Mauricio & Linnenluecke, Martina, 2023. "Meta-analysis of the role of equity dimensions in household solar panel adoption," Ecological Economics, Elsevier, vol. 206(C).
    11. Shimada, Hideki & Honda, Tomonori, 2022. "What drives households’ choices of residential solar photovoltaic capacity?," Energy Policy, Elsevier, vol. 168(C).
    12. Corbett, Charles J. & Hershfield, Hal E. & Kim, Henry & Malloy, Timothy F. & Nyblade, Benjamin & Partie, Alison, 2022. "The role of place attachment and environmental attitudes in adoption of rooftop solar," Energy Policy, Elsevier, vol. 162(C).
    13. O'Shaughnessy, Eric, 2022. "Rooftop solar incentives remain effective for low- and moderate-income adoption," Energy Policy, Elsevier, vol. 163(C).
    14. Maren Springsklee & Fabian Scheller, 2022. "Exploring non-residential technology adoption: an empirical analysis of factors associated with the adoption of photovoltaic systems by municipal authorities in Germany," Papers 2212.05281, arXiv.org.
    15. Hsu, Jenneille Hwai-Yuan, 2018. "Predictors for adoption of local solar approval processes and impact on residential solar installations in California cities," Energy Policy, Elsevier, vol. 117(C), pages 463-472.
    16. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    17. Nepal, Rabindra & Best, Rohan & Taylor, Madeline, 2023. "Strategies for reducing ethnic inequality in energy outcomes: A Nepalese example," Energy Economics, Elsevier, vol. 126(C).
    18. Hanson, Eric & Canfield, Casey & Fikru, Mahelet G. & Sumner, Jenny, 2023. "State-level trends in renewable energy procurement via solar installation versus green electricity," Renewable Energy, Elsevier, vol. 218(C).
    19. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).
    20. Best, Rohan & Chareunsy, Andrea & Taylor, Madeline, 2023. "Changes in inequality for solar panel uptake by Australian homeowners," Ecological Economics, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523001568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.