IDEAS home Printed from https://ideas.repec.org/r/pra/mprapa/52434.html
   My bibliography  Save this item

A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Junhong Chu & Pradeep Chintagunta & Javier Cebollada, 2008. "Research Note—A Comparison of Within-Household Price Sensitivity Across Online and Offline Channels," Marketing Science, INFORMS, vol. 27(2), pages 283-299, 03-04.
  2. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College," NBER Working Papers 9546, National Bureau of Economic Research, Inc.
  3. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute for the Study of Labor (IZA).
  4. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
  5. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
  6. Chintagunta, Pradeep K., 1999. "Measuring the effects of new brand introduction on inter-brand strategic interaction," European Journal of Operational Research, Elsevier, vol. 118(2), pages 315-331, October.
  7. repec:eee:ijrema:v:32:y:2015:i:3:p:284-296 is not listed on IDEAS
  8. Keane, Michael, 2004. "Modeling Health Insurance Choices in “Competitive” Markets," MPRA Paper 55198, University Library of Munich, Germany.
  9. Tat Chan & Ravi Dhar & William Putsis, 2015. "The Technological Conundrum: How Rapidly Advancing Technology Can Lead to Commoditization," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(2), pages 119-132, June.
  10. González-Benito, Óscar & Martínez-Ruiz, María Pilar & Mollá-Descals, Alejandro, 2009. "Using store level scanner data to improve category management decisions: Developing positioning maps," European Journal of Operational Research, Elsevier, vol. 198(2), pages 666-674, October.
  11. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 5-64, March.
  12. Michael P. Keane, 1989. "A computationally practical simulation estimator for panel data, with applications to labor supply and real wage movement over the business cycle," Discussion Paper / Institute for Empirical Macroeconomics 16, Federal Reserve Bank of Minneapolis.
  13. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
  14. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
  15. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
  16. DeSarbo, Wayne S. & Kim, Youngchan & Wedel, Michel & Fong, Duncan K. H., 1998. "A Bayesian approach to the spatial representation of market structure from consumer choice data," European Journal of Operational Research, Elsevier, vol. 111(2), pages 285-305, December.
  17. Gazley, Aaron & Clark, Gemma & Sinha, Ashish, 2011. "Understanding preferences for motion pictures," Journal of Business Research, Elsevier, vol. 64(8), pages 854-861, August.
  18. Pradeep K. Chintagunta, 1998. "Inertia and Variety Seeking in a Model of Brand-Purchase Timing," Marketing Science, INFORMS, vol. 17(3), pages 253-270.
  19. Gamba, Andrea & Tesser, Matteo, 2009. "Structural estimation of real options models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 798-816, April.
  20. Erdem, Tulin & Winer, Russell S., 1998. "Econometric modeling of competition: A multi-category choice-based mapping approach," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 159-175, November.
  21. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute for the Study of Labor (IZA).
  22. repec:dgr:rugsom:96b22 is not listed on IDEAS
  23. repec:eee:aumajo:v:16:y:2008:i:1:p:3-19 is not listed on IDEAS
  24. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
  25. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  26. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
  27. repec:spr:orspec:v:39:y:2017:i:3:d:10.1007_s00291-017-0478-y is not listed on IDEAS
  28. Wayne S. DeSarbo & Alexandru M. Degeratu & Michel Wedel & M. Kim Saxton, 2001. "The Spatial Representation of Market Information," Marketing Science, INFORMS, vol. 20(4), pages 426-441, June.
  29. Rungie, Cam & Scarpa, Riccardo & Thiene, Mara, 2014. "The influence of individuals in forming collective household preferences for water quality," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 161-174.
  30. Karsten Hansen & Vishal Singh, 2008. "Research Note--Are Store-Brand Buyers Store Loyal? An Empirical Investigation," Management Science, INFORMS, vol. 54(10), pages 1828-1834, October.
  31. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
  32. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
  33. Harris, Katherine & Schultz, Jennifer & Feldman, Roger, 2002. "Measuring consumer perceptions of quality differences among competing health benefit plans," Journal of Health Economics, Elsevier, vol. 21(1), pages 1-17, January.
  34. repec:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_palgrave.jors.2602524 is not listed on IDEAS
  35. Karsten Hansen & Vishal Singh & Pradeep Chintagunta, 2006. "Understanding Store-Brand Purchase Behavior Across Categories," Marketing Science, INFORMS, vol. 25(1), pages 75-90, 01-02.
  36. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
  37. Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
  38. Andy S. Choi & Kelly S. Fielding, 2016. "Cultural Attitudes as WTP Determinants: A Revised Cultural Worldview Scale," Sustainability, MDPI, Open Access Journal, vol. 8(6), pages 1-18, June.
  39. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
  40. Andrew Daly & Stephane Hess & Bhanu Patruni & Dimitris Potoglou & Charlene Rohr, 2012. "Using ordered attitudinal indicators in a latent variable choice model: a study of the impact of security on rail travel behaviour," Transportation, Springer, vol. 39(2), pages 267-297, March.
  41. Rungie, Cam M. & Coote, Leonard V. & Louviere, Jordan J., 2012. "Latent variables in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 5(3), pages 145-156.
  42. Oliver J. Rutz & Garrett P. Sonnier, 2011. "The Evolution of Internal Market Structure," Marketing Science, INFORMS, vol. 30(2), pages 274-289, 03-04.
  43. repec:dgr:rugsom:00f25 is not listed on IDEAS
  44. DeSarbo, Wayne S. & Kim, Youngchan & Fong, Duncan, 1998. "A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 79-108, November.
  45. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
  46. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
  47. Sunila George & Raghbendra Jha & Hari K. Nagarajan, 2002. "The Evolution and Structure of the Two-wheeler Industry in India," ASARC Working Papers 2002-02, The Australian National University, Australia South Asia Research Centre.
  48. Paulo Albuquerque & Bart J. Bronnenberg, 2009. "Estimating Demand Heterogeneity Using Aggregated Data: An Application to the Frozen Pizza Category," Marketing Science, INFORMS, vol. 28(2), pages 356-372, 03-04.
  49. Joonwook Park & Priyali Rajagopal & Wayne DeSarbo, 2012. "A New Heterogeneous Multidimensional Unfolding Procedure," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 263-287, April.
  50. Jonathan James, 2018. "Estimation of Factor Structured Covariance Mixed Logit Models," Working Papers 1802, California Polytechnic State University, Department of Economics.
  51. Francisco J. R. Ruiz & Susan Athey & David M. Blei, 2017. "SHOPPER: A Probabilistic Model of Consumer Choice with Substitutes and Complements," Papers 1711.03560, arXiv.org, revised Jul 2018.
  52. Ashish Sinha & J. Jeffrey Inman & Yantao Wang & Joonwook Park & Gerard J. Tellis & Rajesh K. Chandy & Deborah MacInnis & Pattana Thaivanich, 2005. "Practice Prize Reports," Marketing Science, INFORMS, vol. 24(3), pages 351-366, September.
  53. Chen, Mingli, 2016. "Estimation of Nonlinear Panel Models with Multiple Unobserved Effects," Economic Research Papers 269326, University of Warwick - Department of Economics.
  54. Hu, Wuyang & Adamowicz, Wiktor L. & Veeman, Michele M., 2005. "Bayesian Analysis of Consumer Choices with Taste, Context, Reference Point and Individual Scale Effects," 2005 Annual meeting, July 24-27, Providence, RI 19296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  55. Keane, Michael, 2004. "Modeling Health Insurance Choice Using the Heterogeneous Logit Model," MPRA Paper 55203, University Library of Munich, Germany.
  56. Erik Meijer & Jan Rouwendal, 2006. "Measuring welfare effects in models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 227-244.
  57. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
  58. repec:eee:jouret:v:88:y:2012:i:1:p:88-101 is not listed on IDEAS
  59. Denis Bolduc & Bernard Fortin & France Labrecque & Paul Lanoie, 1997. "Incentive Effects of Public Insurance Programs on the Occurence and the Composition of Workplace Injuries," CIRANO Working Papers 97s-24, CIRANO.
  60. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
  61. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
  62. Rennhoff, Adam D., 2004. "Paying For Shelf Space: An Investigation Of Merchandising Allowances In The Grocery Industry," Research Reports 25155, University of Connecticut, Food Marketing Policy Center.
  63. Zhang Qin & Seetharaman P.B. & Narasimhan Chakravarthi, 2005. "Modeling Selectivity in Households' Purchase Quantity Outcomes: A Count Data Approach," Review of Marketing Science, De Gruyter, vol. 3(1), pages 1-21, July.
  64. Karsten Hansen & Vishal Singh, 2009. "Market Structure Across Retail Formats," Marketing Science, INFORMS, vol. 28(4), pages 656-673, 07-08.
  65. José M. Labeaga & Mercedes Martos-Partal, 2007. "A Proposal to Distinguish State Dependence and Unobserved Heterogeneity in Binary Brand Choice Models," Working Papers 2007-02, FEDEA.
  66. González-Benito, Óscar, 2004. "Random effects choice models: seeking latent predisposition segments in the context of retail store format selection," Omega, Elsevier, vol. 32(2), pages 167-177, April.
  67. Eric T. Bradlow & Young-Hoon Park, 2007. "Bayesian Estimation of Bid Sequences in Internet Auctions Using a Generalized Record-Breaking Model," Marketing Science, INFORMS, vol. 26(2), pages 218-229, 03-04.
  68. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
  69. Philip Yu, 2000. "Bayesian analysis of order-statistics models for ranking data," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 281-299, September.
  70. Magor, Thomas J. & Coote, Leonard V., 2014. "Latent variables as a proxy for inherent preferences: A test of antecedent volition," Journal of choice modelling, Elsevier, vol. 13(C), pages 24-36.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.