IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On Identification of Bayesian DSGE Models

Listed author(s):
  • Gary Koop

    ()

    (Department of Economics, University of Strathclyde)

  • M. Hashem Pesaran

    ()

    (Faculty of Economics, University of Cambridge)

  • Ron Smith

    ()

    (Department of Economics, Mathematics and Statistics, University of Birkbeck)

In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be di¢ cult to deter- mine whether a parameter is identi?ed. For the researcher using Bayesian methods, a lack of identi?cation may not be evident since the posterior of a parameter of interest may di¤er from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not su¤er from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identi?ed. In such cases the marginal posterior of an unidenti?ed parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identi?ed parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.strath.ac.uk/media/1newwebsite/departmentsubject/economics/research/researchdiscussionpapers/2011/11-08_Final.pdf
Download Restriction: no

Paper provided by University of Strathclyde Business School, Department of Economics in its series Working Papers with number 1108.

as
in new window

Length: 38 pages
Date of creation: Mar 2011
Handle: RePEc:str:wpaper:1108
Contact details of provider: Postal:
Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE

Phone: +44 (0)141 548 3842
Fax: +44 (0)141 548 4445
Web page: http://www.strath.ac.uk/economics/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Iskrev, Nikolay, 2008. "Evaluating the information matrix in linearized DSGE models," Economics Letters, Elsevier, vol. 99(3), pages 607-610, June.
  2. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
  3. Pesaran, M. H., 1981. "Identification of rational expectations models," Journal of Econometrics, Elsevier, vol. 16(3), pages 375-398, August.
  4. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
  5. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  6. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
  7. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
  8. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
  9. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
  10. Koop, Gary & Poirier, Dale J., 1997. "Learning about the across-regime correlation in switching regression models," Journal of Econometrics, Elsevier, vol. 78(2), pages 217-227, June.
  11. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
  12. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
  13. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
  14. Gali, Jordi & Gertler, Mark & David Lopez-Salido, J., 2005. "Robustness of the estimates of the hybrid New Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1107-1118, September.
  15. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(06), pages 701-743, December.
  16. Stephane Dees & M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2009. "Identification of New Keynesian Phillips Curves from a Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(7), pages 1481-1502, October.
  17. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
  18. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
  19. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
  20. Wallis, Kenneth F, 1980. "Econometric Implications of the Rational Expectations Hypothesis," Econometrica, Econometric Society, vol. 48(1), pages 49-73, January.
  21. James M. Nason & Gregor W. Smith, 2008. "Identifying the new Keynesian Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 525-551.
  22. Stephane Dees & M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2009. "Identification of New Keynesian Phillips Curves from a Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(7), pages 1481-1502, October.
  23. Andreas Beyer & Roger E. A. Farmer & Jérôme Henry & Massimiliano Marcellino, 2008. "Factor analysis in a model with rational expectations," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 271-286, 07.
  24. Nikolay Iskrev, 2010. "Evaluating the strength of identification in DSGE models. An a priori approach," 2010 Meeting Papers 1117, Society for Economic Dynamics.
  25. Pudney, S. E., 1982. "The identification of rational expectations models under structural neutrality," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 117-121, November.
  26. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
  27. Sargent, Thomas J, 1976. "The Observational Equivalence of Natural and Unnatural Rate Theories of Macroeconomics," Journal of Political Economy, University of Chicago Press, vol. 84(3), pages 631-640, June.
  28. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
  29. Mavroeidis, Sophocles, 2005. "Identification Issues in Forward-Looking Models Estimated by GMM, with an Application to the Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 421-448, June.
  30. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  31. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
  32. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
  33. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  34. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
  35. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  36. Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
  37. McCallum, Bennett T, 1979. "On the Observational Inequivalence of Classical and Keynesian Models," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 395-402, April.
  38. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:str:wpaper:1108. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kirsty Hall)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.