IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v99y2008i3p607-610.html
   My bibliography  Save this article

Evaluating the information matrix in linearized DSGE models

Author

Listed:
  • Iskrev, Nikolay

Abstract

In this note we show how the stochastic general equilibrium (DSGE) models can be evaluated analytically. The result is useful for the estimation and identification analysis of such models.

Suggested Citation

  • Iskrev, Nikolay, 2008. "Evaluating the information matrix in linearized DSGE models," Economics Letters, Elsevier, vol. 99(3), pages 607-610, June.
  • Handle: RePEc:eee:ecolet:v:99:y:2008:i:3:p:607-610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(07)00389-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    2. Peter A. Zadrozny, 1988. "Analytic Derivatives for Estimation of Linear Dynamic Models," Working Papers 88-5, Center for Economic Studies, U.S. Census Bureau.
    3. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    4. Thomas J. Rothenberg, 1966. "Efficient Estimation with a priori Information: A Classical Approach," Cowles Foundation Discussion Papers 205, Cowles Foundation for Research in Economics, Yale University.
    5. André Klein & Guy Melard & Toufik Zahaf, 2000. "Construction of the exact Fisher information matrix of Gaussian time series models by means of matrix differential rules," ULB Institutional Repository 2013/13742, ULB -- Universite Libre de Bruxelles.
    6. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    7. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    8. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
    9. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evren Caglar & Jagjit S. Chadha & Katsuyuki Shibayama, 2011. "Bayesian Estimation of DSGE models: Is the Workhorse Model Identified?," Studies in Economics 1125, School of Economics, University of Kent.
    2. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    3. Martin Fukac & Adrian Pagan, 2009. "Structural Macro-Econometric Modelling in a Policy Environment," NCER Working Paper Series 50, National Centre for Econometric Research.
    4. repec:eee:eecrev:v:100:y:2017:i:c:p:293-317 is not listed on IDEAS
    5. Andrew Binning & Junior Maih, 2016. "Implementing the Zero Lower Bound in an Estimated Regime-Switching DSGE Model," Working Papers No 3/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    6. Mutschler, Willi, 2014. "Identification of DSGE Models - A Comparison of Methods and the Effect of Second Order Approximation," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100598, Verein für Socialpolitik / German Economic Association.
    7. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    8. Jagjit S. Chadha & Katsuyuki Shibayama, 2018. "Bayesian Estimation of DSGE Models: identification using a diagnostic indicator," Discussion Papers 1825, Centre for Macroeconomics (CFM).
    9. Martin Fukac, 2009. "Impulse Response Identification in DSGE Models," Reserve Bank of New Zealand Discussion Paper Series DP2009/14, Reserve Bank of New Zealand.
    10. Gunnar BÃ¥rdsen & Luca Fanelli, 2015. "Frequentist Evaluation of Small DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 307-322, July.
    11. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    12. Jean Barthélemy & Magali Marx, 2012. "Solving Rational Expectations Models," Sciences Po publications info:hdl:2441/3ug0u3qte39, Sciences Po.
    13. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    14. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:99:y:2008:i:3:p:607-610. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.