IDEAS home Printed from https://ideas.repec.org/p/koc/wpaper/1205.html
   My bibliography  Save this paper

Bayesian Estimation of DSGE Models: Is the Workhorse Model Identified?

Author

Listed:
  • Evren Caglar

    (University of Kent)

  • Jagjit S. Chadha

    (University of Kent)

  • Katsuyuki Shibayama

    (University of Kent)

Abstract

Koop, Pesaran and Smith (2011) suggest a simple diagnostic indicator for the Bayesian estimation of the parameters of a DSGE model. They show that, if a parameter is well identified, the precision of the posterior should improve as the (artificial) data size T increases, and the indicator checks the speed at which precision improves. It does not require any additional programming; a researcher just needs to generate artificial data and estimate the model with different T. Applying this to Smets and Wouters'(2007) medium size US model, we find that while exogenous shock processes are well identified, most of the parameters in the structural equations are not.

Suggested Citation

  • Evren Caglar & Jagjit S. Chadha & Katsuyuki Shibayama, 2012. "Bayesian Estimation of DSGE Models: Is the Workhorse Model Identified?," Koç University-TUSIAD Economic Research Forum Working Papers 1205, Koc University-TUSIAD Economic Research Forum.
  • Handle: RePEc:koc:wpaper:1205
    as

    Download full text from publisher

    File URL: http://eaf.ku.edu.tr/sites/eaf.ku.edu.tr/files/erf_wp_1205.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nikolay Iskrev, 2010. "Parameter identification in Dynamic Economic models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    2. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    3. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    5. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    6. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
    7. Andrle, Michal, 2010. "A note on identification patterns in DSGE models," Working Paper Series 1235, European Central Bank.
    8. Iskrev, Nikolay, 2008. "Evaluating the information matrix in linearized DSGE models," Economics Letters, Elsevier, vol. 99(3), pages 607-610, June.
    9. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    10. Marco Ratto & Werner Roeger, 2005. "An estimated open-economy model for the EURO area," Computing in Economics and Finance 2005 84, Society for Computational Economics.
    11. Ratto, Marco & Roeger, Werner & Veld, Jan in 't, 2009. "QUEST III: An estimated open-economy DSGE model of the euro area with fiscal and monetary policy," Economic Modelling, Elsevier, vol. 26(1), pages 222-233, January.
    12. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatelain, Jean-Bernard & Ralf, Kirsten, 2014. "Stability and Identification with Optimal Macroprudential Policy Rules," MPRA Paper 55282, University Library of Munich, Germany.
    2. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    3. Mutschler, Willi, 2014. "Identification of DSGE Models - A Comparison of Methods and the Effect of Second Order Approximation," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100598, Verein für Socialpolitik / German Economic Association.
    4. Chen, Xiaoshan & Kirsanova, Tatiana & Leith, Campbell, 2017. "How optimal is US monetary policy?," Journal of Monetary Economics, Elsevier, vol. 92(C), pages 96-111.
    5. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    6. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    7. Xianglong Liu & Adrian R. Pagan & Tim Robinson, 2018. "Critically Assessing Estimated DSGE Models: A Case Study of a Multi‐sector Model," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 349-371, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chadha, Jagjit S. & Shibayama, Katsuyuki, 2018. "Bayesian estimation of DSGE models: Identification using a diagnostic indicator," Journal of Economic Dynamics and Control, Elsevier, vol. 95(C), pages 172-186.
    2. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    3. Claire A. Reicher, 2016. "A Note on the Identification of Dynamic Economic Models with Generalized Shock Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(3), pages 412-423, June.
    4. Reicher, Christopher Phillip, 2013. "A note on the identification of dynamic economic models with generalized shock processes," Kiel Working Papers 1821, Kiel Institute for the World Economy (IfW Kiel).
    5. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Ratto, Marco, 2019. "Identification versus misspecification in New Keynesian monetary policy models," European Economic Review, Elsevier, vol. 113(C), pages 225-246.
    6. Zhongjun Qu & Denis Tkachenko, 2010. "Identification and Frequency Domain QML Estimation of Linearized DSGE Models," Boston University - Department of Economics - Working Papers Series WP2010-053, Boston University - Department of Economics.
    7. Acurio Vásconez, Verónica & Giraud, Gaël & Mc Isaac, Florent & Pham, Ngoc-Sang, 2015. "The effects of oil price shocks in a new-Keynesian framework with capital accumulation," Energy Policy, Elsevier, vol. 86(C), pages 844-854.
    8. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    10. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    11. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    12. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.
    13. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    14. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2013. "Identification-robust analysis of DSGE and structural macroeconomic models," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 340-350.
    15. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
    16. Pedro Chaim & Márcio Poletti Laurini, 2022. "Data Cloning Estimation and Identification of a Medium-Scale DSGE Model," Stats, MDPI, vol. 6(1), pages 1-13, December.
    17. Herranz, Moisés Meroño & Turino, Francesco, 2023. "Tax evasion, fiscal policy and public debt: Evidence from Spain," Economic Systems, Elsevier, vol. 47(3).
    18. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    19. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    20. Yao, Fang, 2009. "Real and nominal rigidities in price setting: A bayesian analysis using aggregate data," SFB 649 Discussion Papers 2009-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Keywords

    Bayesian Estimation; Dynamic stochastic general equilibrium models; Identification.;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:koc:wpaper:1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sumru Oz (email available below). General contact details of provider: https://edirc.repec.org/data/dekoctr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.