IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On Identification of Bayesian DSGE Models

  • Koop, Gary


    (University of Strathclyde)

  • Pesaran, M. Hashem


    (University of Cambridge)

  • Smith, Ron P.


    (Birkbeck College, University of London)

In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are -consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Institute for the Study of Labor (IZA) in its series IZA Discussion Papers with number 5638.

in new window

Length: 39 pages
Date of creation: Apr 2011
Date of revision:
Handle: RePEc:iza:izadps:dp5638
Contact details of provider: Postal:
IZA, P.O. Box 7240, D-53072 Bonn, Germany

Phone: +49 228 3894 223
Fax: +49 228 3894 180
Web page:

Order Information: Postal: IZA, Margard Ody, P.O. Box 7240, D-53072 Bonn, Germany

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
  2. Gali, Jordi & Gertler, Mark & David Lopez-Salido, J., 2005. "Robustness of the estimates of the hybrid New Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1107-1118, September.
  3. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2008. "Structural vector autoregressions: theory of identification and algorithms for inference," FRB Atlanta Working Paper 2008-18, Federal Reserve Bank of Atlanta.
  4. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-91, May.
  5. Richard Clarida & Jordi Galí & Mark Gertler, 1997. "The science of monetary policy: A new Keynesian perspective," Economics Working Papers 356, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 1999.
  6. Dées, Stéphane & Pesaran, Hashem & Smith, Vanessa & Smith, Ron P., 2008. "Identification of new Keynesian Phillips Curves from a global perspective," Working Paper Series 0892, European Central Bank.
  7. Del Negro, Marco & Schorfheide, Frank, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," CEPR Discussion Papers 6119, C.E.P.R. Discussion Papers.
  8. Frank Kleibergen & Eric Zivot, 2003. "Bayesian and Classical Approaches to Instrumental Variable Regression," Working Papers UWEC-2002-21-P, University of Washington, Department of Economics.
  9. Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
  10. Iskrev, Nikolay, 2008. "Evaluating the information matrix in linearized DSGE models," Economics Letters, Elsevier, vol. 99(3), pages 607-610, June.
  11. Finn E. Kydland & Edward C. Prescott, 1994. "The computational experiment: an econometric tool," Working Paper 9420, Federal Reserve Bank of Cleveland.
  12. James J. Heckman, 2010. "Building Bridges Between Structural and Program Evaluation Approaches to Evaluating Policy," NBER Working Papers 16110, National Bureau of Economic Research, Inc.
  13. Hoogerheide, L.F. & Kleibergen, F.R. & van Dijk, H.K., 2006. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Econometric Institute Research Papers EI 2006-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  14. James M. Nason & Gregor W. Smith, 2005. "Identifying the New Keynesian Phillips Curve," Working Papers 1026, Queen's University, Department of Economics.
  15. Thomas Lubik & Frank Schorfheide, 2002. "Testing for Indeterminacy:An Application to U.S. Monetary Policy," Economics Working Paper Archive 480, The Johns Hopkins University,Department of Economics, revised Jun 2003.
  16. Nikolay Iskrev, 2010. "Evaluating the strength of identification in DSGE models. An a priori approach," Working Papers w201032, Banco de Portugal, Economics and Research Department.
  17. Fabio Canova & Luca Sala, 2005. "Back to square one: Identification issues in DSGE models," Economics Working Papers 927, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2006.
  18. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
  19. Koop, Gary & Poirier, Dale J., 1997. "Learning about the across-regime correlation in switching regression models," Journal of Econometrics, Elsevier, vol. 78(2), pages 217-227, June.
  20. Sargent, Thomas J, 1976. "The Observational Equivalence of Natural and Unnatural Rate Theories of Macroeconomics," Journal of Political Economy, University of Chicago Press, vol. 84(3), pages 631-40, June.
  21. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
  22. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  23. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
  24. Pesaran, M. H., 1981. "Identification of rational expectations models," Journal of Econometrics, Elsevier, vol. 16(3), pages 375-398, August.
  25. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  26. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(06), pages 701-743, December.
  27. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  28. Mavroeidis, Sophocles, 2005. "Identification Issues in Forward-Looking Models Estimated by GMM, with an Application to the Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 421-48, June.
  29. McCallum, Bennett T, 1979. "On the Observational Inequivalence of Classical and Keynesian Models," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 395-402, April.
  30. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  31. Andreas Beyer & Roger E. A. Farmer & Jérôme Henry & Massimiliano Marcellino, 2007. "Factor Analysis in a Model with Rational Expectations," NBER Working Papers 13404, National Bureau of Economic Research, Inc.
  32. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
  33. Wallis, Kenneth F, 1980. "Econometric Implications of the Rational Expectations Hypothesis," Econometrica, Econometric Society, vol. 48(1), pages 49-73, January.
  34. Pudney, S. E., 1982. "The identification of rational expectations models under structural neutrality," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 117-121, November.
  35. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp5638. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.