IDEAS home Printed from https://ideas.repec.org/p/lsg/lsgwps/wp256.html
   My bibliography  Save this paper

Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach

Author

Listed:
  • Mintewab Bezabih
  • Remidius Ruhinduka
  • Mare Sarr

Abstract

This article assesses the consequential risk impacts of the recent system of rice intensification (SRI) implemented in the Morogoro region of Tanzania, one of the largest Semi-Arid regions, using household and farm plot level data extended to incorporate farmers’ perceptions of climate change. The analysis implements a moment approximation approach that accounts for the impacts of the technology on the first three moments of rice yields and total household income. Using a endogenous switching regressions model, we find that perception of climate change is a key driver for SRI adoption and impacts primarily the moments of income. Furthermore, the average effect of SRI on dispersion and skewness are positive. In particular, the large increase in income variability is not compensated by the increase in skewness (i.e., a reduction in downside risk), which may explain why SRI adoption rate remains low in Tanzania. The study also highlights the importance of climate perceptions and moisture-conserving technology in risk management in Semi-Arid areas. The theme of the study also falls within the objectives of the PRISE project (Pathways to Resilience in Semi-Arid Economies) as it brings together institutional intervention (in the form of SRI provision), land productivity and vulnerability (in the form of farmers’ perceptions of climatic factors).

Suggested Citation

  • Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.
  • Handle: RePEc:lsg:lsgwps:wp256
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2016/11/Working-Paper-256-Bezabih-et-al.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atanu Saha & C. Richard Shumway & Hovav Talpaz, 1994. "Joint Estimation of Risk Preference Structure and Technology Using Expo-Power Utility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(2), pages 173-184.
    2. W. Neil Adger & Saleemul Huq & Katrina Brown & Declan Conway & Mike Hulme, 2003. "Adaptation to climate change in the developing world," Progress in Development Studies, , vol. 3(3), pages 179-195, July.
    3. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    4. Antle, John M & Crissman, Charles C, 1990. "Risk, Efficiency, and the Adoption of Modern Crop Varieties: Evidence from the Philippines," Economic Development and Cultural Change, University of Chicago Press, vol. 38(3), pages 517-537, April.
    5. Brennan, John P., 1984. "Measuring the Contribution of New Varieties to Increasing Wheat Yields," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 52(03), pages 1-21, December.
    6. Bekele A. Shiferaw & Tewodros A. Kebede & Liang You, 2008. "Technology adoption under seed access constraints and the economic impacts of improved pigeonpea varieties in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 309-323, November.
    7. Binswanger, Hans P, 1981. "Attitudes toward Risk: Theoretical Implications of an Experiment in Rural India," Economic Journal, Royal Economic Society, vol. 91(364), pages 867-890, December.
    8. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    9. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    10. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    11. A. de Janvry & E. Sadoulet, 2002. "World Poverty and the Role of Agricultural Technology: Direct and Indirect Effects," Journal of Development Studies, Taylor & Francis Journals, vol. 38(4), pages 1-26.
    12. Syud Amer Ahmed & Noah S. Diffenbaugh & Thomas W. Hertel & William J. Martin, 2012. "Agriculture and Trade Opportunities for Tanzania: Past Volatility and Future Climate Change," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 429-447, August.
    13. Stoop, Willem A. & Uphoff, Norman & Kassam, Amir, 2002. "A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers," Agricultural Systems, Elsevier, vol. 71(3), pages 249-274, March.
    14. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    15. Menezes, C & Geiss, C & Tressler, J, 1980. "Increasing Downside Risk," American Economic Review, American Economic Association, vol. 70(5), pages 921-932, December.
    16. Ziervogel, Gina & Bithell, Mike & Washington, Richard & Downing, Tom, 2005. "Agent-based social simulation: a method for assessing the impact of seasonal climate forecast applications among smallholder farmers," Agricultural Systems, Elsevier, vol. 83(1), pages 1-26, January.
    17. Yonas Alem & Mintewab Bezabih & Menale Kassie & Precious Zikhali, 2010. "Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 165-175, March.
    18. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    19. Yonas Alem & Håkan Eggert & Remidius Ruhinduka, 2015. "Improving Welfare Through Climate-Friendly Agriculture: The Case of the System of Rice Intensification," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 243-263, October.
    20. Barry Smit & Ian Burton & Richard Klein & J. Wandel, 2000. "An Anatomy of Adaptation to Climate Change and Variability," Climatic Change, Springer, vol. 45(1), pages 223-251, April.
    21. Mahmud Yesuf & Randall A. Bluffstone, 2009. "Poverty, Risk Aversion, and Path Dependence in Low-Income Countries: Experimental Evidence from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 1022-1037.
    22. Maddison, David, 2007. "The perception of and adaptation to climate change in Africa," Policy Research Working Paper Series 4308, The World Bank.
    23. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    24. Hanan G. Jacoby, 1993. "Shadow Wages and Peasant Family Labour Supply: An Econometric Application to the Peruvian Sierra," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 903-921.
    25. Chavas, Jean-Paul & Holt, Matthew T, 1996. "Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 329-335, May.
    26. Salvatore Di Falco & Marcella Veronesi, 2013. "How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia," Land Economics, University of Wisconsin Press, vol. 89(4), pages 743-766.
    27. Kazushi Takahashi & Christopher B. Barrett, 2014. "The System of Rice Intensification and its Impacts on Household Income and Child Schooling: Evidence from Rural Indonesia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 269-289.
    28. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    29. J. M. Antle & W. J. Goodger, 1984. "Measuring Stochastic Technology: The Case of Tulare Milk Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 342-350.
    30. Kaliba, Aloyce R. & Verkuijl, Hugo & Mwangi, Wilfred, 2000. "Factors Affecting Adoption Of Improved Maize Seeds And Use Of Inorganic Fertilizer For Maize Production In The Intermediate And Lowland Zones Of Tanzania," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(1), pages 1-13, April.
    31. Kathage, Jonas & Qaim, Matin & Kassie, Menale & Shiferaw, Bekele A., 2012. "Seed market liberalization, hybrid maize adoption, and impacts on smallholder farmers in Tanzania," GlobalFood Discussion Papers 131756, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    32. John M. Antle, 1987. "Econometric Estimation of Producers' Risk Attitudes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 509-522.
    33. Smale, Melinda, 1996. "Understanding Global Trends in the Use of Wheat Diversity and International Flows of Wheat Genetic Resources," Economics Working Papers 7670, CIMMYT: International Maize and Wheat Improvement Center.
    34. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    35. Bhavani Shankar & Richard Bennett & Steve Morse, 2007. "Output Risk Aspects Of Genetically Modified Crop Technology In South Africa," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(4), pages 277-291.
    36. William Lin & G. W. Dean & C. V. Moore, 1974. "An Empirical Test of Utility vs. Profit Maximization in Agricultural Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 56(3), pages 497-508.
    37. Luc Christiaensen & Lionel Demery, 2007. "Down to Earth : Agriculture and Poverty Reduction in Africa," World Bank Publications - Books, The World Bank Group, number 6624, December.
    38. Ephraim Nkonya & Ted Schroeder & David Norman, 1997. "Factors Affecting Adoption Of Improved Maize Seed And Fertiliser In Northern Tanzania," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 1-12, January.
    39. Morris, Michael L. & Tripp, Robert & Dankyi, A.A., 1999. "Adoption and Impacts of Improved Maize Production Technology: A Case Study of the Ghana Grains Development Project," Economics Program Papers 48767, CIMMYT: International Maize and Wheat Improvement Center.
    40. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    41. Alem, Yonas & Eggert, Håkan & Ruhinduka, Remidius, 2015. "Improving Welfare through Climate-friendly Agriculture: The Case of the System of Rice Intensification," Working Papers in Economics 630, University of Gothenburg, Department of Economics.
    42. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    43. Kaliba, Aloyce R.M. & Verkuijl, Hugo & Mwangi, Wilfred, 2000. "Factors Affecting Adoption of Improved Maize Seeds and Use of Inorganic Fertilizer for Maize Production in the Intermediate and Lowland Zones of Tanzania," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 32(1), pages 35-47, April.
    44. Byerlee, Derek, 1996. "Modern varieties, productivity, and sustainability: Recent experience and emerging challenges," World Development, Elsevier, vol. 24(4), pages 697-718, April.
    45. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    46. Chavas, Jean-Paul, 2004. "Risk Analysis in Theory and Practice," Elsevier Monographs, Elsevier, edition 1, number 9780121706210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarr, Mare & Bezabih Ayele, Mintewab & Kimani, Mumbi E. & Ruhinduka, Remidius, 2021. "Who benefits from climate-friendly agriculture? The marginal returns to a rainfed system of rice intensification in Tanzania," World Development, Elsevier, vol. 138(C).
    2. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    3. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    4. Kassie, Menale & Yesuf, Mahmud & Köhlin, Gunnar, 2008. "The Role of Production Risk in Sustainable Land-Management Technology Adoption in the Ethiopian Highlands," RFF Working Paper Series dp-08-15-efd, Resources for the Future.
    5. Prosper F. Bangwayo‐Skeete & Mintewab Bezabih & Precious Zikhali, 2012. "Crop biodiversity, productivity and production risk: Panel data micro‐evidence from Ethiopia," Natural Resources Forum, Blackwell Publishing, vol. 36(4), pages 263-273, November.
    6. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.
    7. Yonas Alem & Håkan Eggert & Remidius Ruhinduka, 2015. "Improving Welfare Through Climate-Friendly Agriculture: The Case of the System of Rice Intensification," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 243-263, October.
    8. Mukasa, Adamon N., 2018. "Technology adoption and risk exposure among smallholder farmers: Panel data evidence from Tanzania and Uganda," World Development, Elsevier, vol. 105(C), pages 299-309.
    9. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    10. Aslihan Arslan & Kristin Floress & Christine Lamanna & Leslie Lipper & Solomon Asfaw & Todd Rosenstock, 2020. "IFAD RESEARCH SERIES 63 - The adoption of improved agricultural technologies - A meta-analysis for Africa," IFAD Research Series 304758, International Fund for Agricultural Development (IFAD).
    11. Sesmero, Juan P. & Ricker-Gilbert, Jacob E. & Cook, Aaron M., 2015. "How do African Farm Households Adapt to Climate Change? A Structural Analysis from Malawi," 2015 Conference, August 9-14, 2015, Milan, Italy 212688, International Association of Agricultural Economists.
    12. Hurley, Terrance M., 2010. "A review of agricultural production risk in the developing world," Working Papers 188476, HarvestChoice.
    13. Fonda Jane Awuor & Ibrahim Ndegwa Macharia & Richard Mbithi Mulwa & Maurice Juma Ogada, 2024. "Adoption and impact of integrated agriculture aquaculture on income and productivity of smallholder fish farmers in Kenya," SN Business & Economics, Springer, vol. 4(1), pages 1-25, January.
    14. Yuko Nakano & Yuki Tanaka & Keijiro Otsuka, 2018. "Impact of training on the intensification of rice farming: evidence from rainfed areas in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 193-202, March.
    15. Salvatore Di Falco & Marcella Veronesi, 2011. "On Adaptation to Climate Change and Risk Exposure in the Nile Basin of Ethiopia," IED Working paper 11-15, IED Institute for Environmental Decisions, ETH Zurich.
    16. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    17. Sanglestsawai, Santi & Rodriguez, Divina Gracia P. & Rejesus, Roderick M. & Yorobe, Jose M., 2017. "Production Risk, Farmer Welfare, and Bt Corn in the Philippines," Agricultural and Resource Economics Review, Cambridge University Press, vol. 46(3), pages 507-528, December.
    18. Nolan, Elizabeth & Santos, Paulo, 2012. "Insurance premiums and GM traits," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125942, International Association of Agricultural Economists.
    19. Salvatore Di Falco & Marcella Veronesi, 2011. "On Adaptation to Climate Change and Risk Exposure in the Nile Basin of Ethiopia," IED Working paper 11-15, IED Institute for Environmental Decisions, ETH Zurich.
    20. Bozzola, Martina, 2014. "Adaptation to Climate Change: Farmers' Risk Preferences and the Role of Irrigation," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182771, European Association of Agricultural Economists.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The GRI Administration (email available below). General contact details of provider: https://edirc.repec.org/data/grlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.