IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/14559.html
   My bibliography  Save this paper

Adoption of System of Rice Intensification and its Impact on Rice Yields and Household Income: An Analysis for India

Author

Listed:
  • Varma, Poornima

Abstract

Natural resource management (NRM) technologies, such as the system of rice intensification (SRI) are recognized as a promising systemic approach to enhance rice production at affordable costs without harming the environment. Yet there is no consensus in the literature with respect to the factors influencing the adoption as well as the welfare outcomes of adoption. This paper identifies the factors that affect farmers’ decisions to adopt SRI in major rice producing States of India and its impact on rice yield and household income. The multinomial endogenous treatment effects model adopted in the present study analyses the factors influencing the adoption and the impact of adoption in a joint framework. Results suggest that household assets, irrigation, access to information etc. increased the likelihood of household adopting SRI whereas the size of landholding, the number of years household stayed in rice cultivation, fear of poor yield, etc. decreased the likelihood of adopting SRI. The welfare impacts of SRI adoption revealed that all combinations of SRI individually and as a group (plant management, water management and soil management) had an impact on yield. However, the impact of SRI adoption on household income was quite mixed.

Suggested Citation

  • Varma, Poornima, 2017. "Adoption of System of Rice Intensification and its Impact on Rice Yields and Household Income: An Analysis for India," IIMA Working Papers WP2017-02-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:14559
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    2. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    3. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    4. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    5. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    6. JunJie Wu & Bruce A. Babcock, 1998. "The Choice of Tillage, Rotation, and Soil Testing Practices: Economic and Environmental Implications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 494-511.
    7. Benjamin Davis & Paul Winters & Thomas Reardon & Kostas Stamoulis, 2009. "Rural nonfarm employment and farming: household‐level linkages," Agricultural Economics, International Association of Agricultural Economists, vol. 40(2), pages 119-123, March.
    8. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    9. Mazvimavi, Kizito & Twomlow, Steve, 2009. "Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 20-29, June.
    10. Bekele Shiferaw & Tewodros Kebede & Menale Kassie & Monica Fisher, 2015. "Market imperfections, access to information and technology adoption in Uganda: challenges of overcoming multiple constraints," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 475-488, July.
    11. Stoop, Willem A. & Uphoff, Norman & Kassam, Amir, 2002. "A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers," Agricultural Systems, Elsevier, vol. 71(3), pages 249-274, March.
    12. Ira Matuschke & Matin Qaim, 2009. "The impact of social networks on hybrid seed adoption in India," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 493-505, September.
    13. Doss, Cheryl R. & Morris, Michael L., 2001. "How does gender affect the adoption of agricultural innovations?: The case of improved maize technology in Ghana," Agricultural Economics, Blackwell, vol. 25(1), pages 27-39, June.
    14. Adesina, Akinwumi A. & Zinnah, Moses M., 1993. "Technology characteristics, farmers' perceptions and adoption decisions: A Tobit model application in Sierra Leone," Agricultural Economics, Blackwell, vol. 9(4), pages 297-311, December.
    15. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    16. Reddy, V. Ratna & Reddy, P. Prudhvikar & Reddy, M. Srinivasa & Raju, Sree Rama, 2005. "Water Use Efficiency: A Study of System of Rice Intensification (SRI) Adoption in Andhra Pradesh," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 60(3), pages 1-15.
    17. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    18. Salvatore Di Falco & Marcella Veronesi, 2013. "How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia," Land Economics, University of Wisconsin Press, vol. 89(4), pages 743-766.
    19. Khonje, Makaiko & Manda, Julius & Alene, Arega D. & Kassie, Menale, 2015. "Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia," World Development, Elsevier, vol. 66(C), pages 695-706.
    20. John Pender & Berhanu Gebremedhin, 2008. "Determinants of Agricultural and Land Management Practices and Impacts on Crop Production and Household Income in the Highlands of Tigray, Ethiopia," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 17(3), pages 395-450, June.
    21. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    22. Langyintuo, Augustine S. & Mungoma, Catherine, 2008. "The effect of household wealth on the adoption of improved maize varieties in Zambia," Food Policy, Elsevier, vol. 33(6), pages 550-559, December.
    23. Maurice Ogada & Germano Mwabu & Diana Muchai, 2014. "Farm technology adoption in Kenya: a simultaneous estimation of inorganic fertilizer and improved maize variety adoption decisions," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 2(1), pages 1-18, December.
    24. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2012. "Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste," Agricultural Systems, Elsevier, vol. 108(C), pages 64-73.
    25. Mary K. Mathenge & Melinda Smale & David Tschirley, 2015. "Off-farm Employment and Input Intensification among Smallholder Maize Farmers in Kenya," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 519-536, June.
    26. Jeffrey H. Dorfman, 1996. "Modeling Multiple Adoption Decisions in a Joint Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(3), pages 547-557.
    27. Devi, K. Sita & Ponnarasi, T., 2009. "An Economic Analysis of Modern Rice Production Technology and its Adoption Behaviour in Tamil Nadu," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 22(Conferenc).
    28. Khonje, Makaiko & Mkandawire, Petros & Manda, Julius & Alene, Arega, 2015. "Analysis of adoption and impacts of improved cassava varieties," 2015 Conference, August 9-14, 2015, Milan, Italy 211842, International Association of Agricultural Economists.
    29. Salvatore di Falco & Erwin Bulte, 2011. "A Dark Side of Social Capital? Kinship, Consumption, and Savings," Journal of Development Studies, Taylor & Francis Journals, vol. 47(8), pages 1128-1151, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varma, P., 2018. "Adoption and the Impact of System of Rice Intensification on Rice Yields and Household Income: A study for India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275986, International Association of Agricultural Economists.
    2. Varma, Poornima, 2016. "Agricultural Technology Adoption under Multiple Constraints: An Analysis of System of Rice Intensification (SRI) in India," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235806, Agricultural and Applied Economics Association.
    3. Aslihan Arslan & Kristin Floress & Christine Lamanna & Leslie Lipper & Solomon Asfaw & Todd Rosenstock, 2020. "IFAD RESEARCH SERIES 63 - The adoption of improved agricultural technologies - A meta-analysis for Africa," IFAD Research Series 304758, International Fund for Agricultural Development (IFAD).
    4. Berkhout, Ezra & Glover, Dominic & Kuyvenhoven, Arie, 2015. "On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps," Agricultural Systems, Elsevier, vol. 132(C), pages 157-166.
    5. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    6. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2012. "Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste," Agricultural Systems, Elsevier, vol. 108(C), pages 64-73.
    7. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.
    8. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    9. Sarr, Mare & Bezabih Ayele, Mintewab & Kimani, Mumbi E. & Ruhinduka, Remidius, 2021. "Who benefits from climate-friendly agriculture? The marginal returns to a rainfed system of rice intensification in Tanzania," World Development, Elsevier, vol. 138(C).
    10. Prisca Koncy Fosso & Roger Tsafack Nanfosso, 2016. "Adoption of agricultural innovations in risky environment: the case of corn producers in the west of Cameroon," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(1), pages 51-62, June.
    11. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    12. Kim, Jongwoo & Mason, Nicole M. & Snapp, Sieglinde S., 2018. "Does sustainable intensification of maize production enhance child nutrition? Evidence from rural Tanzania," 2018 Annual Meeting, August 5-7, Washington, D.C. 273906, Agricultural and Applied Economics Association.
    13. Adolwa, Ivan Solomon & Schwarze, Stefan & Buerkert, Andreas, 2019. "Impacts of integrated soil fertility management on yield and household income: The case of Tamale (Ghana) and Kakamega (Kenya)," Ecological Economics, Elsevier, vol. 161(C), pages 186-192.
    14. Teklewold, Hailemariam & Adam, Rahma I. & Marenya, Paswel, 2020. "What explains the gender differences in the adoption of multiple maize varieties? Empirical evidence from Uganda and Tanzania," World Development Perspectives, Elsevier, vol. 18(C).
    15. Yuko Nakano & Yuki Tanaka & Keijiro Otsuka, 2018. "Impact of training on the intensification of rice farming: evidence from rainfed areas in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 193-202, March.
    16. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    17. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    18. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    19. Julius Manda & Cornelis Gardebroek & Makaiko Khonje & Arega Alene & Munyaradzi Mutenje & Menale Kassie, 2016. "Determinants of child nutritional status in the eastern province of Zambia: the role of improved maize varieties," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 239-253, February.
    20. Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:14559. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.