IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modelling Financial High Frequency Data Using Point Processes

  • Luc Bauwens
  • Nikolaus Hautsch

In this paper, we give an overview of the state-of-the-art in the econometric literature on the modeling of so-called financial point processes. The latter are associated with the random arrival of specific financial trading events, such as transactions, quote updates, limit orders or price changes observable based on financial high-frequency data. After discussing fundamental statistical concepts of point process theory, we review durationbased and intensity-based models of financial point processes. Whereas duration-based approaches are mostly preferable for univariate time series, intensity-based models provide powerful frameworks to model multivariate point processes in continuous time. We illustrate the most important properties of the individual models and discuss major empirical applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2007-066.pdf
Download Restriction: no

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2007-066.

as
in new window

Length: 35 pages
Date of creation: Nov 2007
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2007-066
Contact details of provider: Postal:
Spandauer Str. 1,10178 Berlin

Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Web page: http://sfb649.wiwi.hu-berlin.de
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Giovanni De Luca & Giampiero M. Gallo, 2005. "Time-varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometrics Working Papers Archive wp2005_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  2. James D. Hamilton & Oscar Jorda, . "A model for the federal funds rate target," Department of Economics 99-07, California Davis - Department of Economics.
  3. repec:att:wimass:9520 is not listed on IDEAS
  4. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
  5. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  6. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
  7. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
  8. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime Switching Garch Models," Working Papers 0605, Ben-Gurion University of the Negev, Department of Economics.
  9. Christian M. Hafner, 2000. "Durations, Volume and the Prediction of Financial Returns in Transaction Time," Econometric Society World Congress 2000 Contributed Papers 0599, Econometric Society.
  10. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
  11. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
  12. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
  13. Meddahi, N. & Renault, E. & Werker, B.J.M., 2003. "GARCH and Irregularly Spaced Data," Discussion Paper 2003-27, Tilburg University, Center for Economic Research.
  14. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  15. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
  16. Frank Gerhard & Nikolaus Hautsch, 1999. "Volatility Estimation on the Basis of Price Intensities," CoFE Discussion Paper 99-19, Center of Finance and Econometrics, University of Konstanz.
  17. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-79, June.
  18. Drost, F.C. & Werker, B.J.M., 2004. "Semiparametric duration models," Other publications TiSEM a1895e3e-f720-454b-9613-f, Tilburg University, School of Economics and Management.
  19. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  20. Anthony Hall & Nikolaus Hautsch, 2006. "Order aggressiveness and order book dynamics," Empirical Economics, Springer, vol. 30(4), pages 973-1005, January.
  21. BAUWENS, Luc & VEREDAS, David, . "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," CORE Discussion Papers RP 1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2006. "Modelling financial transaction price movements: a dynamic integer count data model," Empirical Economics, Springer, vol. 30(4), pages 795-825, January.
  23. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
  24. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
  25. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 450-493.
  26. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
  27. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
  28. Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 501, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  29. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  30. Fernandes, M. & Grammig, J., 2000. "Non-Parametric Specification Tests for Conditional Duration Models," Economics Working Papers eco2000/4, European University Institute.
  31. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  32. Engle, Robert F & Lunde, Asger, 1998. "Trades and Quotes: A Bivariate Point Process," University of California at San Diego, Economics Working Paper Series qt8bh079sq, Department of Economics, UC San Diego.
  33. BAUWENS, Luc & ROMBOUTS, Jeroen V.K., . "Econometrics," CORE Discussion Papers RP 1713, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  34. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.
  35. Clive G. Bowsher, 2005. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2005-W26, Economics Group, Nuffield College, University of Oxford.
  36. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  37. Nikolaus Hautsch, 2003. "Assessing the Risk of Liquidity Suppliers on the Basis of Excess Demand Intensities," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 189-215.
  38. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  39. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
  40. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1291-1320, October.
  41. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
  42. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
  43. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  44. Jan Henneke & Svetlozar Rachev & Frank Fabozzi & Metodi Nikolov, 2011. "MCMC-based estimation of Markov Switching ARMA-GARCH models," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 259-271.
  45. Eric Ghysels & Christian Gourieroux & Joanna Jasiak, 1997. "Stochastic Volatility Duration Models," Working Papers 97-46, Centre de Recherche en Economie et Statistique.
  46. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  47. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  48. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
  49. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
  50. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2007-066. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.