IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2013.35.html
   My bibliography  Save this paper

Climate Change and Adaptation: The Case of Nigerian Agriculture

Author

Listed:
  • Francesco Bosello

    (Centro Euro-Mediterraneo sui Cambiamenti Climatici, Fondazione Eni Enrico Mattei and University of Milan, Italy)

  • Lorenza Campagnolo

    (Centro Euro-Mediterraneo sui Cambiamenti Climatici, Fondazione Eni Enrico Mattei and University of Venice, Italy)

  • Fabio Eboli

    (Centro Euro-Mediterraneo sui Cambiamenti Climatici, Fondazione Eni Enrico Mattei and University of Venice, Italy)

Abstract

The present research offers an economic assessment of climate change impacts on the four major crop families characterizing Nigerian agriculture, covering more than 80% of agricultural value added. The evaluation is performed shocking land productivity in a computable general equilibrium model tailored to replicate Nigerian economic development until the mid of this century. The detail of land uses in the model has been also increased differentiating land types per agro ecological zones. Uncertainty on future climate is captured, using, as input, yield changes computed by a crop model, covering the whole range of variability produced by an envelope of one RCM and tem GCM runs. Climate change turns to be unambiguously negative for Nigeria in the medium term with production losses, increase in crop prices, higher food dependency on foreign imports and GDP losses in all the simulations after 2025. In a second part of the paper a cost effectiveness analysis of adaptation in Nigeria agriculture is conducted. Adaptation practices considered are a mix of cheaper “soft measures” and more costly “hard” irrigation expansion. The main result is that cost effectiveness of the whole package crucially depends on the possibility to implement adaptation exploiting low cost opportunities. In this case all climate change damages can be offset with a benefit cost ration larger than one in all the climate regimes. Expensive irrigation expansion should however be applied on a much more limited acreage compared with soft measures. If adaptation costs are those of the high end estimates, full adaptation ceases to be cost/effective.This points out the need of a careful planning and implementation of adaptation, irrespectively on the type, looking for measures apt to control its unit cost.

Suggested Citation

  • Francesco Bosello & Lorenza Campagnolo & Fabio Eboli, 2013. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Working Papers 2013.35, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2013.35
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2013-035.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    2. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    3. Francesco Bosello & Andrea Bigano & Roberto Roson & Richard S.J. Tol, 2006. "Economy-Wide Estimates of the Implications of Climate Change: A Joint Analysis for Sea Level Rise and Tourism," Working Papers 2006.135, Fondazione Eni Enrico Mattei.
    4. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, March.
    5. Kane, Sally & Reilly, John & Tobey, James, 1991. "Climate Change: Economic Implications for World Agriculture," Agricultural Economic Reports 308153, United States Department of Agriculture, Economic Research Service.
    6. Ronneberger, Kerstin & Berrittella, Maria & Boselle, Francesco & Tol, Richard, 2008. "KLUM@GTAP: Spatially-Explicit, Biophysical Land Use in a Computable General Equilibrium Model," GTAP Working Papers 2611, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    7. Bosello, Francesco & Roson, Roberto & Tol, Richard S.J., 2006. "Economy-wide estimates of the implications of climate change: Human health," Ecological Economics, Elsevier, vol. 58(3), pages 579-591, June.
    8. Francesco Bosello & Roberto Roson & Richard Tol, 2007. "Economy-wide Estimates of the Implications of Climate Change: Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(3), pages 549-571, July.
    9. Reilly, J. & Paltsev, S. & Felzer, B. & Wang, X. & Kicklighter, D. & Melillo, J. & Prinn, R. & Sarofim, M. & Sokolov, A. & Wang, C., 2007. "Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone," Energy Policy, Elsevier, vol. 35(11), pages 5370-5383, November.
    10. Ruslana R. Palatnik & Fabio Eboli & Andrea Ghermandi & Iddo Kan & Mickey Rapaport-Rom & Mordechai Shechter, 2011. "Integration Of General And Partial Equilibrium Agricultural Land-Use Transformation For The Analysis Of Climate Change In The Mediterranean," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 275-299.
    11. Zhai, Fan & Lin, Tun & Byambadorj, Enerelt, 2009. "A General Equilibrium Analysis of the Impact of Climate Change on Agriculture in the People’s Republic of China," Asian Development Review, Asian Development Bank, vol. 26(1), pages 206-225.
    12. Francesco Bosello & Jian Zhang, 2005. "Assessing Climate Change Impacts: Agriculture," Working Papers 2005.94, Fondazione Eni Enrico Mattei.
    13. Keeny, Roman & Hertel, Thomas, 2005. "GTAP-AGR: A Framework for Assessing the Implications of Multilateral Changes in Agricultural Policies," Technical Papers 283422, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    15. Thurlow, James & Zhu, Tingju & Diao, Xinshen, 2009. "The impact of climate variability and change on economic growth and poverty in Zambia:," IFPRI discussion papers 890, International Food Policy Research Institute (IFPRI).
    16. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    17. Bosello, Francesco & Eboli, Fabio & Parrado, Ramiro & Nunes, Paulo A.L.D. & Ding, Helen & Rosa, Renato, 2011. "The economic assessment of changes in ecosystem services: and application of the CGE methodology," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(01), pages 1-30, November.
    18. Francesco Bosello & Robert Nicholls & Julie Richards & Roberto Roson & Richard Tol, 2012. "Economic impacts of climate change in Europe: sea-level rise," Climatic Change, Springer, vol. 112(1), pages 63-81, May.
    19. Reilly, John & Hohmann, Neil, 1993. "Climate Change and Agriculture: The Role of International Trade," American Economic Review, American Economic Association, vol. 83(2), pages 306-312, May.
    20. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    21. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    22. Hanoch, Giora, 1975. "Production and Demand Models with Direct or Indirect Implicit Additivity," Econometrica, Econometric Society, vol. 43(3), pages 395-419, May.
    23. Lee, Huey-Lin & Hertel, Thomas & Rose, Steven & Avetisyan, Misak, 2008. "An Integrated Global Land Use Data Base for CGE Analysis of Climate Policy Options," GTAP Working Papers 2603, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    24. Roy Darwin & Richard Tol, 2001. "Estimates of the Economic Effects of Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 113-129, June.
    25. Avetisyan, Misak & Uris Baldos & Thomas Hertel, 2010. "Development of the GTAP Version 7 Land Use Data Base," GTAP Research Memoranda 3426, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    26. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    27. Raffaello Cervigni & Riccardo Valentini & Monia Santini, 2013. "Toward Climate-Resilient Development in Nigeria," World Bank Publications - Books, The World Bank Group, number 15811.
    28. Deke, Oliver & Hooss, Kurt Georg & Kasten, Christiane & Klepper, Gernot & Springer, Katrin, 2001. "Economic impact of climate change: simulations with a regionalized climate-economy model," Kiel Working Papers 1065, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montaud, Jean-Marc & Pecastaing, Nicolas & Tankari, Mahamadou, 2017. "Potential socio-economic implications of future climate change and variability for Nigerien agriculture: A countrywide dynamic CGE-Microsimulation analysis," Economic Modelling, Elsevier, vol. 63(C), pages 128-142.
    2. Ikhide, Emily Edoisa & Umaru, Ezra K. & Oyebola, Fehintola & Omoju, Oluwasola E., 2021. "A CGE Analysis of the Gender Productivity Gap in Nigeria’s Agriculture Sector," 2021 Conference, August 17-31, 2021, Virtual 315922, International Association of Agricultural Economists.
    3. Mahjoubi, Soufiane & Mkaddem, Chamseddine, 2022. "Impact of climate change on yield production in Algeria: evidence from ARDL empirical approach," MPRA Paper 115565, University Library of Munich, Germany.
    4. Zuzana Smeets-Kristkova & Thom Achterbosch & Marijke Kuiper, 2019. "Healthy Diets and Reduced Land Pressure: Towards a Double Gain for Future Food Systems in Nigeria," Sustainability, MDPI, vol. 11(3), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    2. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    3. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    4. Jonathan Pycroft & Jan Abrell & Juan-Carlos Ciscar, 2016. "The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 225-253, June.
    5. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    6. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    7. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    8. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    9. Enrica De Cian & Ramiro Parrado, 2012. "Technology Spillovers Embodied in International Trade: Intertemporal, regional and sectoral effects in a global CGE," Working Papers 2012.27, Fondazione Eni Enrico Mattei.
    10. Weslem Rodrigues Faria & Eduardo Amaral Haddad, 2017. "Modeling Land Use And The Effects Of Climate Change In Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-37, February.
    11. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    12. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    13. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    14. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    15. Bigano, Andrea & Bosello, Francesco & Roson, Roberto & Tol, Richard S.J., 2006. "Economy-Wide Estimates of the Implications of Climate Change: A Joint Analysis for Sea Level Rise and Tourism," Climate Change Modelling and Policy Working Papers 12022, Fondazione Eni Enrico Mattei (FEEM).
    16. Ochuodho, T.O. & Lantz, V.A. & Lloyd-Smith, P. & Benitez, P., 2012. "Regional economic impacts of climate change and adaptation in Canadian forests: A CGE modeling analysis," Forest Policy and Economics, Elsevier, vol. 25(C), pages 100-112.
    17. Francesco Bosello & Roberto Roson & Richard Tol, 2007. "Economy-wide Estimates of the Implications of Climate Change: Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(3), pages 549-571, July.
    18. Onil Banerjee & Martin Cicowiez & Mark Horridge & Renato Vargas, 2016. "A Conceptual Framework for Integrated Economic-Environmental Modelling," CEDLAS, Working Papers 0202, CEDLAS, Universidad Nacional de La Plata.
    19. Karen Fisher-Vanden & Ian Sue Wing & Elisa Lanzi & David Popp, 2013. "Modeling climate change feedbacks and adaptation responses: recent approaches and shortcomings," Climatic Change, Springer, vol. 117(3), pages 481-495, April.
    20. Roberto Roson & Francesco Bosello & Enrica De Cian, 2007. "Climate Change, Energy Demand and Market Power in a General Equilibrium Model of the World Economy," Working Papers 2007_09, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Keywords

    Climate Change; Impact; Adaptation; Agriculture; CGE Modelling;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2013.35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.