IDEAS home Printed from https://ideas.repec.org/p/ags/aare11/100557.html
   My bibliography  Save this paper

The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?

Author

Listed:
  • Hertel, Thomas W.

Abstract

The number of people which the world must feed is expected to increase by another 2 billion people by 2050. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. Most past growth in the demand for food has been met by improvements in productivity, but there is evidence of declining growth rates for agricultural yields; climate-change is likely to have important impacts on productivity through changes in temperature and precipitation; land-based climate mitigation policies are also projected to lead to increasing pressure on agricultural lands. Meanwhile supplies of water for irrigation are under pressure, urban land use is on the rise, and demands for setting aside land for environmental purposes continue to increase. Clearly, an enormous amount of additional research on ways to deal with this potential “perfect storm” is needed. This paper highlights the explores the roles of biophysical and economic uncertainty in these projections of long run land use change, using this to suggest a future research agenda.

Suggested Citation

  • Hertel, Thomas W., 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100557, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare11:100557
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/100557
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas W. Hertel & Kyle Stiegert & Harry Vroomen, 1996. "Nitrogen-Land Substitution in Corn Production: A Reconciliation of Aggregate and Firm-Level Evidence," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(1), pages 30-40.
    2. Kanlaya J. Barr & Bruce A. Babcock & Miguel A. Carriquiry & Andre M. Nassar & Leila Harfuch, 2011. "Agricultural Land Elasticities in the United States and Brazil," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 449-462.
    3. Jette Jacobsen & Nick Hanley, 2009. "Are There Income Effects on Global Willingness to Pay for Biodiversity Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 137-160, June.
    4. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    5. Ivanic, Maros & Martin, Will, 2008. "Implications of higher global food prices for poverty in low-income countries," Policy Research Working Paper Series 4594, The World Bank.
    6. Ahmed, Syud Amer & Diffenbaugh, Noah S. & Hertel, Thomas W. & Ramankutty, Navin & Rios, Ana R. & Rowhani, Pedram, 2009. "Climate Volatility and Poverty Vulnerability in Tanzania," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49358, Agricultural and Applied Economics Association.
    7. Sohngen, Brent & Brown, Sandra, 2006. "The influence of conversion of forest types on carbon sequestration and other ecosystem services in the South Central United States," Ecological Economics, Elsevier, vol. 57(4), pages 698-708, June.
    8. Seale, James & Regmi, Anita & Bernstein, Jason, 2003. "International Evidence on Food Consumption Patterns," Technical Bulletins 184321, United States Department of Agriculture, Economic Research Service.
    9. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Golub, Alla & W. Hertel, Thomas, 2008. "Global Economic Integration and Land Use Change," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 23, pages 463-488.
    11. Barbier, Edward B., 1997. "Introduction to the environmental Kuznets curve special issue," Environment and Development Economics, Cambridge University Press, vol. 2(04), pages 357-367, November.
    12. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    13. Jan Fidrmuc & Peter Huber, 2007. "Introduction," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 34(4), pages 281-286, September.
    14. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    15. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    16. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    17. Beckman, Jayson F. & Livingston, Michael J. & McBride, William D. & Ribaudo, Marc & MacDonald, James M., 2009. "The Extent and Characteristics of Manure Use on U.S. Cropland under Rate Restrictions," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49172, Agricultural and Applied Economics Association.
    18. Ahmed, Syud Amer & Thomas Hertel & Ruben Lubowski, 2009. "Calibration of a Land Cover Supply Function Using Transition Probabilities," GTAP Research Memoranda 2947, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    19. Hertel, Thomas & Rose, Steven & Tol, Richard, 2008. "Land Use in Computable General Equilibrium Models: An Overview," GTAP Working Papers 2595, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:rensus:v:82:y:2018:i:p3:p:2387-2400 is not listed on IDEAS
    2. Haile, Mekbib G. & Kalkuhl, Matthias, 2013. "Agricultural supply response to international food prices and price volatility: a crosscountry panel analysis," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149630, Agricultural and Applied Economics Association.
    3. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    4. Fukase,Emiko & Martin,William J., 2017. "Economic growth, convergence, and world food demand and supply," Policy Research Working Paper Series 8257, The World Bank.
    5. P. Harrison & R. Dunford & C. Savin & M. Rounsevell & I. Holman & A. Kebede & B. Stuch, 2015. "Cross-sectoral impacts of climate change and socio-economic change for multiple, European land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 279-292, February.
    6. Stephen Shisanya & Paramu Mafongoya, 2016. "Adaptation to climate change and the impacts on household food security among rural farmers in uMzinyathi District of Kwazulu-Natal, South Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 597-608, June.
    7. Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
    8. Philip G. Pardey & Jason M. Beddow & Terrance M. Hurley & Timothy K.M. Beatty & Vernon R. Eidman, 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 571-589, October.
    9. Andre Deppermann & Markus Blesl & Ole Boysen & Harald Grethe & David Bruchof, 2016. "Linkages between the energy and agricultural sectors: insights from European Union greenhouse gas mitigation scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(5), pages 743-759, June.
    10. Cho, Sung Ju & McCarl, Bruce A. & Wu, Ximing, 2015. "Climate Change Adaptation via U.S. Land Use Transitions: A Spatial Econometric Analysis," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196684, Southern Agricultural Economics Association.
    11. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    12. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    13. Alexandre Gohin, 2014. "Assessing the Land Use Changes and Greenhouse Gas Emissions of Biofuels: Elucidating the Crop Yield Effects," Land Economics, University of Wisconsin Press, vol. 90(4), pages 575-586.
    14. repec:eee:agisys:v:163:y:2018:i:c:p:45-57 is not listed on IDEAS
    15. Suh, Dong Hee & Moss, Charles B., 2014. "Exploring Agricultural Production Systems: Interactions between the Crop and Livestock Sectors," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170149, Agricultural and Applied Economics Association.
    16. Chamberlin, Jordan & Jayne, T.S. & Headey, D., 2014. "Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa," Food Policy, Elsevier, vol. 48(C), pages 51-65.
    17. Cho, Sung Ju & McCarl, Bruce A. & Wu, Ximing, 2014. "Climate Change Adaptation and Shifts in Land Use for Major Crops in the U.S," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170015, Agricultural and Applied Economics Association.
    18. Stehfest, Elke & Berg, Maurits van den & Woltjer, Geert & Msangi, Siwa & Westhoek, Henk, 2013. "Options to reduce the environmental effects of livestock production – Comparison of two economic models," Agricultural Systems, Elsevier, vol. 114(C), pages 38-53.
    19. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    20. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.

    More about this item

    Keywords

    Food Consumption/Nutrition/Food Safety;

    JEL classification:

    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare11:100557. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaresea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.