IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i2p355-366.html
   My bibliography  Save this article

Operational safety of automated and human driving in mixed traffic environments: A perspective of car-following behavior

Author

Listed:
  • Tao Li
  • Xu Han
  • Jiaqi Ma
  • Marilia Ramos
  • Changju Lee

Abstract

The advent of automated vehicles (AVs) will provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicle (HV) to a fully AV traffic environment, there will be a mixed traffic flow including both HVs and AVs. The impact of introducing AVs into existing traffic, however, has not yet been fully understood. In this paper, we advance this understanding by conducting mixed traffic safety evaluation from the perspective of car-following behavior using real-world AV operational data of mixed traffic. To understand how the AVs impact other vehicles on the road, we analyzed the operational behaviors of HV-following-HV, AV-following-HV, and HV-following-AV. A selected car-following model is calibrated, and results show that there are significant differences between the HV-following-HV and the other two groups, indicating safe AV behavior and changes in HV behavior (i.e. less aggressive, safer) after the introduction of AVs into the traffic. Additionally, to understand AV behavioral safety, we investigate behavior predictions (one of the most critical inputs for AVs to make car-following decisions) of AVs and their surrounding vehicles using a mature baseline model and a new Conditional Variational Autoencoder (CVAE) framework. The result shows potential risks of inaccurate predictions of the baseline model and the necessity to consider additional factors, such as vehicle interactions and driver behavior, into the prediction for risk mitigation. Arterial vehicle trajectory data from the Lyft Level 5 Dataset is applied to test the proposed methodological framework to understand the car-following safety risks of HVs and AVs in the mixed traffic stream.

Suggested Citation

  • Tao Li & Xu Han & Jiaqi Ma & Marilia Ramos & Changju Lee, 2023. "Operational safety of automated and human driving in mixed traffic environments: A perspective of car-following behavior," Journal of Risk and Reliability, , vol. 237(2), pages 355-366, April.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:355-366
    DOI: 10.1177/1748006X211050696
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211050696
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211050696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    3. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    4. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    5. Bin Liu & Weifeng Chen & Bo Li & Xiuping Liu, 2022. "Neural Subspace Learning for Surface Defect Detection," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    6. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    7. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    8. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    9. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:355-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.