IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v6y2020i1d10.1186_s40854-020-00176-3.html
   My bibliography  Save this article

Bitcoin pricing: impact of attractiveness variables

Author

Listed:
  • Rodrigo Hakim das Neves

    (Sao Paulo School Of Economics (FGV))

Abstract

The research seeks to contribute to Bitcoin pricing analysis based on the dynamics between variables of attractiveness and the value of the digital currency. Using the error correction model, the relationship between the price of the virtual currency, Bitcoin, and the number of Google searches that used the terms bitcoin, bitcoin crash and crisis between December 2012 and February 2018 is analyzed. The study also applied the same analysis to prices of Bitcoin denominated in different sovereign currencies traded during the same period. The Johansen (J Econ Dyn Control 12:231-254, 1988) test demonstrates that the price and number of searches on Google for the first two terms are cointegrated. This research indicates that there are strong short-term and long-term dynamics among attractiveness factors, suggesting that an increase in worldwide interest in Bitcoin is usually preceded by a price increase. In contrast, an increase in market mistrust over a collapse of the currency, as measured by the term bitcoin crash, is followed by a fall in price. Intense world economic crisis events appear to have a strong impact on interest in the virtual currency. This study demonstrates that during a worldwide crisis Bitcoin becomes an alternative investment, increasing its price. Based on it, bitcoin may be used as a safe haven by the financial market and its intrinsic characteristics might help the investors and governments to find new mechanisms to deal with monetary transactions.

Suggested Citation

  • Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
  • Handle: RePEc:spr:fininn:v:6:y:2020:i:1:d:10.1186_s40854-020-00176-3
    DOI: 10.1186/s40854-020-00176-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-020-00176-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-020-00176-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Erratum to: Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-1, December.
    2. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    3. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    4. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    5. Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
    6. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    7. Gandal, Neil & Hamrick, JT & Moore, Tyler & Oberman, Tali, 2018. "Price manipulation in the Bitcoin ecosystem," Journal of Monetary Economics, Elsevier, vol. 95(C), pages 86-96.
    8. Min Xu & Xingtong Chen & Gang Kou, 2019. "A systematic review of blockchain," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-14, December.
    9. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    10. Muhammad Ali Nasir & Toan Luu Duc Huynh & Sang Phu Nguyen & Duy Duong, 2019. "Forecasting cryptocurrency returns and volume using search engines," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-13, December.
    11. Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-13, December.
    12. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    13. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    14. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    15. Young Bin Kim & Jurim Lee & Nuri Park & Jaegul Choo & Jong-Hyun Kim & Chang Hun Kim, 2017. "When Bitcoin encounters information in an online forum: Using text mining to analyse user opinions and predict value fluctuation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    16. Osamah Al-Khazali & Elie Bouri & David Roubaud, 2018. "The impact of positive and negative macroeconomic news surprises: Gold versus Bitcoin," Economics Bulletin, AccessEcon, vol. 38(1), pages 373-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Anastasiadis & Stephanos Papadamou, 2022. "The dimension of popularity in the cryptocurrency market," SN Business & Economics, Springer, vol. 2(5), pages 1-15, May.
    2. Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    3. Jong-Min Kim & Chanho Cho & Chulhee Jun, 2022. "Forecasting the Price of the Cryptocurrency Using Linear and Nonlinear Error Correction Model," JRFM, MDPI, vol. 15(2), pages 1-10, February.
    4. Muhammad Owais Qarni & Saiqb Gulzar, 2021. "Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign exchange markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
    5. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    6. Ji Ho Kwon, 2021. "On the factors of Bitcoin’s value at risk," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    2. Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    3. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    4. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    5. Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
    6. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    9. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    10. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    11. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    12. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    13. Julián A. Parra & Carlos Arango & Joaquín Bernal & José E. Gómez & Javier Gómez & Carlos León & Clara Machado & Daniel Osorio & Daniel Rojas & Nicolás Suárez & Eduardo Yanquen, 2019. "Criptoactivos: análisis y revisión de literatura," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 92, pages 1-37, November.
    14. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    15. Fukuta, Yuichi, 1995. "The benchmark issue premium in the Japanese government bond market: A re-examination," Japan and the World Economy, Elsevier, vol. 7(3), pages 291-307, September.
    16. Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
    17. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, January-J.
    18. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    19. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:6:y:2020:i:1:d:10.1186_s40854-020-00176-3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.