IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201812.html
   My bibliography  Save this paper

Spillovers between Bitcoin and other Assets during Bear and Bull Markets

Author

Listed:
  • Elie Bouri

    () (USEK Business School, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon)

  • Mahamitra Das

    () (Economic Research Unit, Indian Statistical Institute, Kolkata, India)

  • Rangan Gupta

    () (Department of Economics, University of Pretoria, Pretoria, South Africa)

  • David Roubaud

    () (Montpellier Research in Management, Montpellier Business School, Montpellier, France)

Abstract

This paper contributes to the embryonic literature on the relations between Bitcoin and conventional investments by studying return and volatility spillovers between this largest cryptocurrency and four asset classes (equities, stocks, commodities, currencies, and bonds) in bear and bull market conditions. We conducted empirical analyses based on a smooth transition VAR GARCH-in-mean model covering daily data from July 19, 2010 to October 31, 2017. We found significant evidence that Bitcoin returns are related quite closely to those of most of the other assets studies, particularly commodities, and therefore, the Bitcoin market is not isolated completely. The significance and sign of the spillovers exhibited some differences in the two market conditions and in the direction of the spillovers, with greater evidence that Bitcoin receives more volatility than it transmits. Our findings have implications for investors and fund managers who are considering Bitcoin as part of their investment strategies and for policymakers concerned about the vulnerability that Bitcoin represents to the stability of the global financial system.

Suggested Citation

  • Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other Assets during Bear and Bull Markets," Working Papers 201812, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201812
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Nelson, Charles R, 1976. "Inflation and Rates of Return on Common Stocks," Journal of Finance, American Finance Association, vol. 31(2), pages 471-483, May.
    2. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    5. Selgin, George, 2015. "Synthetic commodity money," Journal of Financial Stability, Elsevier, vol. 17(C), pages 92-99.
    6. repec:agr:journl:v:1(590):y:2014:i:1(590):p:103-114 is not listed on IDEAS
    7. repec:eee:ecmode:v:64:y:2017:i:c:p:74-81 is not listed on IDEAS
    8. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    9. Aaron Yelowitz & Matthew Wilson, 2015. "Characteristics of Bitcoin users: an analysis of Google search data," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1030-1036, September.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. Mei, Jianping & Saunders, Anthony, 1995. "Bank Risk and Real Estate: An Asset Pricing Perspective," The Journal of Real Estate Finance and Economics, Springer, vol. 10(3), pages 199-224, May.
    13. repec:taf:applec:v:49:y:2017:i:50:p:5063-5073 is not listed on IDEAS
    14. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    15. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    16. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    17. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    18. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    19. Qiang Ji & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Network Causality Structures among Bitcoin and other Financial Assets: A Directed Acyclic Graph Approach," Working Papers 201729, University of Pretoria, Department of Economics.
    20. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    21. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    22. Adam Hayes, 2015. "A Cost of Production Model for Bitcoin," Working Papers 1505, New School for Social Research, Department of Economics.
    23. Angela ROGOJANU & Liana BADEA, 2014. "The issue of competing currencies. Case study – Bitcoin," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(1(590)), pages 103-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afees A. Salisu & Lateef O. Akanni & Rasheed O. Azeez, 2018. "Could this be a fiction? Bitcoin forecasts most tradable currency pairs better than ARFIMA," Working Papers 051, Centre for Econometric and Allied Research, University of Ibadan.
    2. Kazeem Isah & Ibrahim D. Raheem, 2018. "The Hidden Predictive Power of Cryptocurrencies: Evidence from US Stock Market," Working Papers 056, Centre for Econometric and Allied Research, University of Ibadan.

    More about this item

    Keywords

    Bitcoin; asset classes; return and volatility spillovers; asymmetry; smooth transition; bivariate GARCH-M;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201812. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta). General contact details of provider: http://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.