IDEAS home Printed from https://ideas.repec.org/a/now/jirere/101.00000006.html
   My bibliography  Save this article

Economics of Forest Ecosystem Carbon Sinks: A Review

Author

Listed:
  • van Kooten, G. Cornelis
  • Sohngen, Brent

Abstract

Carbon terrestrial sinks are seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO 2 . In this study, we review issues related to the use of terrestrial forestry activities to create CO 2 offset credits. To gain a deeper understanding of the confusing empirical studies of forest projects to create carbon credits under Kyoto, we employ meta-regression analysis to analyze conditions under which forest activities generate CO 2 -emission reduction offsets at competitive "prices." In particular, we examine 68 studies of the costs of creating carbon offsets using forestry. Baseline estimates of costs of sequestering carbon are some US$3–$280 per tCO 2 , indicating that the costs of creating CO 2 -emission offset credits through forestry activities vary wildly. Intensive plantations in the tropics could potentially yield positive benefits to society, but in Europe similar projects could cost as much as $195/tCO 2 . Indeed, Europe is the highest cost region, with costs in the range of $50–$280 per tCO 2 . This might explain why Europe has generally opposed biological sinks as a substitute for emissions reductions, while countries rush to finance forestry sector clean development mechanism projects. In Canada and the U.S., carbon sequestration costs range from a low of about $2 to nearly $80 per tCO 2 . One conclusion is obvious: some forestry projects to sequester carbon are worthwhile undertaking, but certainly not all.

Suggested Citation

  • van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
  • Handle: RePEc:now:jirere:101.00000006
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1561/101.00000006
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Colin J. Roberts, 2005. "Issues in Meta-Regression Analysis: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 295-298, July.
    2. Kenneth M. Chomitz & Franck Lecocq, 2004. "Temporary sequestration credits: an instrument for carbon bears," Climate Policy, Taylor & Francis Journals, vol. 4(1), pages 65-74, March.
    3. Mary Riddel & W. Douglass Shaw, 2003. "Option Wealth and Bequest Values: The Value of Protecting Future Generations from the Health Risks of Nuclear Waste Storage," Land Economics, University of Wisconsin Press, vol. 79(4), pages 537-548.
    4. Boscolo, Marco & Buongiorno, Joseph & Panayotou, Theodore, 1997. "Simulating options for carbon sequestration through improved management of a lowland tropical rainforest," Environment and Development Economics, Cambridge University Press, vol. 2(03), pages 241-263, July.
    5. T. D. Stanley & Stephen B. Jarrell, 2005. "Meta-Regression Analysis: A Quantitative Method of Literature Surveys," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 299-308, July.
    6. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    7. Olschewski, Roland & Benitez, Pablo C., 2005. "Secondary forests as temporary carbon sinks? The economic impact of accounting methods on reforestation projects in the tropics," Ecological Economics, Elsevier, vol. 55(3), pages 380-394, November.
    8. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    9. Lewandrowski, Jan & Peters, Mark & Jones, Carol & House, Robert & Sperow, Mark & Eve, Marlene & Paustian, Keith, 2004. "Economics of Sequestering Carbon in the U.S. Agricultural Sector," Technical Bulletins 184317, United States Department of Agriculture, Economic Research Service.
    10. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon-accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    11. Douglas J. Miller, 1999. "An Econometric Analysis of the Costs of Sequestering Carbon in Forests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 812-824.
    12. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    13. Boscolo, Marco & Vincent, Jeffrey R., 2003. "Nonconvexities in the production of timber, biodiversity, and carbon sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 251-268, September.
    14. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    15. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    16. McKenney, Daniel W. & Yemshanov, Denys & Fox, Glenn & Ramlal, Elizabeth, 2004. "Cost estimates for carbon sequestration from fast growing poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 345-358, June.
    17. Charles A. Zelek & Gerald E. Shively, 2003. "Measuring the Opportunity Cost of Carbon Sequestration in Tropical Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 342-354.
    18. Newell, Richard G. & Stavins, Robert N., 2000. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 211-235, November.
    19. Roger Sedjo & Joe Wisniewski & Alaric Sample & John Kinsman, 1995. "The economics of managing carbon via forestry: Assessment of existing studies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(2), pages 139-165, September.
    20. Siân Mooney & John Antle & Susan Capalbo & Keith Paustian, 2004. "Design and Costs of a Measurement Protocol for Trades in Soil Carbon Credits," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 52(3), pages 257-287, November.
    21. Mary Riddel & W. Shaw, 2006. "A theoretically-consistent empirical model of non-expected utility: An application to nuclear-waste transport," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 131-150, March.
    22. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-66.
    23. Huang, Ching-Hsun & Kronrad, Gary D., 2001. "The cost of sequestering carbon on private forest lands," Forest Policy and Economics, Elsevier, vol. 2(2), pages 133-142, June.
    24. Andrew J. Plantinga & JunJie Wu, 2003. "Co-Benefits from Carbon Sequestration in Forests: Evaluating Reductions in Agricultural Externalities from an Afforestation Policy in Wisconsin," Land Economics, University of Wisconsin Press, vol. 79(1), pages 74-85.
    25. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING-CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    26. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    27. J. Callaway & Bruce McCarl, 1996. "The economic consequences of substituting carbon payments for crop subsidies in U.S. agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 7(1), pages 15-43, January.
    28. Caparros, Alejandro & Jacquemont, Frederic, 2003. "Conflicts between biodiversity and carbon sequestration programs: economic and legal implications," Ecological Economics, Elsevier, vol. 46(1), pages 143-157, August.
    29. G. C. van Kooten, 2004. "Climate Change Economics," Books, Edward Elgar Publishing, number 3424.
    30. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    31. Lewandrowski, Jan & Peters, Mark & Jones, Carol Adaire & House, Robert M. & Sperow, Mark & Eve, Marlen & Paustian, Keith H., 2004. "Economics Of Sequestering Carbon In The U.S. Agricultural Sector," Technical Bulletins 33569, United States Department of Agriculture, Economic Research Service.
    32. Roger A. Sedjo & Gregg Marland, 2003. "Inter-trading permanent emissions credits and rented temporary carbon emissions offsets: some issues and alternatives," Climate Policy, Taylor & Francis Journals, vol. 3(4), pages 435-444, December.
    33. T. D. Stanley, 2005. "Beyond Publication Bias," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 309-345, July.
    34. Lasco, Rodel D & Lales, Joveno S & Arnuevo, Ma.Theresa & Guillermo, Ina Q & de Jesus, Agnes C & Medrano, Reinero & Bajar, Orlando F & Mendoza, Cirilo V, 2002. "Carbon dioxide (CO2) storage and sequestration of land cover in the Leyte Geothermal Reservation," Renewable Energy, Elsevier, vol. 25(2), pages 307-315.
    35. G. Cornelis van Kooten & Louise M. Arthur & W. R. Wilson, 1992. "Potential to Sequester Carbon in Canadian Forests: Some Economic Considerations," Canadian Public Policy, University of Toronto Press, vol. 18(2), pages 127-138, June.
    36. Emina Krcmar & G. Cornelis van Kooten, 2005. "Boreal Forest Carbon Sequestration Strategies: A Case Study of the Little Red River Cree First Nation Land Tenures," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 325-341, December.
    37. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    38. Matthews, Stephen & O'Connor, Raymond & Plantinga, Andrew J., 2002. "Quantifying the impacts on biodiversity of policies for carbon sequestration in forests," Ecological Economics, Elsevier, vol. 40(1), pages 71-87, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Güssow, Kerstin & Proelss, Alexander & Oschlies, Andreas & Rehdanz, Katrin & Rickels, Wilfried, 2010. "Ocean iron fertilization: Why further research is needed," Marine Policy, Elsevier, vol. 34(5), pages 911-918, September.
    2. Renan Ulrich Goetz & Natali Hritonenko & Ruben Mur & Àngels Xabadia & Yuri Yatsenko, 2008. "Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management," Working Papers 329, Barcelona Graduate School of Economics.
    3. van Kooten, G. Cornelis, 2008. "Biological Carbon Sequestration and Carbon Trading Re-Visited," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44262, European Association of Agricultural Economists.
    4. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.
    5. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    6. Poudyal, Neelam C. & Siry, Jacek P. & Bowker, J.M., 2010. "Urban forests' potential to supply marketable carbon emission offsets: A survey of municipal governments in the United States," Forest Policy and Economics, Elsevier, vol. 12(6), pages 432-438, July.
    7. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    8. Gregmar Galinato & Shinsuke Uchida, 2010. "Evaluating Temporary Certified Emission Reductions in Reforestation and Afforestation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(1), pages 111-133, May.
    9. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2012. "Economic prospects of ocean iron fertilization in an international carbon market," Resource and Energy Economics, Elsevier, vol. 34(1), pages 129-150.
    10. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    11. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    12. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2009. "Accounting aspects of ocean iron fertilization," Kiel Working Papers 1572, Kiel Institute for the World Economy (IfW).
    13. Maria Nijnik & Guillaume Pajot, 2014. "Accounting for uncertainties and time preference in economic analysis of tackling climate change through forestry and selected policy implications for Scotland and Ukraine," Climatic Change, Springer, vol. 124(3), pages 677-690, June.
    14. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2010. "Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization," Ecological Economics, Elsevier, vol. 69(12), pages 2495-2509, October.
    15. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    16. Nijnik, Maria & Pajot, Guillaume & Moffat, Andy J. & Slee, Bill, 2013. "An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change," Forest Policy and Economics, Elsevier, vol. 26(C), pages 34-42.
    17. Pajot, Guillaume, 2011. "Rewarding carbon sequestration in South-Western French forests: A costly operation?," Journal of Forest Economics, Elsevier, vol. 17(4), pages 363-377.
    18. Kim, Yoon Hyung & Sohngen, Brent & Golub, Alla A. & Hertel, Thomas W. & Rose, Steven K., 2010. "Impact Of Us And European Biofuel Policies On Forest Carbon," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61456, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Climate change; Kyoto Protocol; Meta-regression analysis; Carbon-uptake costs; Forest sinks;

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:now:jirere:101.00000006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alet Heezemans). General contact details of provider: http://www.nowpublishers.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.