IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-99-31-rev.html
   My bibliography  Save this paper

Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration

Author

Listed:
  • Stavins, Robert
  • Newell, Richard

    (Resources for the Future)

Abstract

The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention because of concerns about the threat of global climate change due to the greenhouse effect. In fact, this approach is an explicit element of both U.S. and international climate policies, partly because of evidence that growing trees to sequester carbon can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of the management and deforestation regimes, silvicultural species, agricultural prices, and discount rates. We find, somewhat counter-intuitively, that the costs of carbon sequestration can be greater if trees are periodically harvested, rather than permanently established. In addition, higher discount rates imply higher marginal costs, and they imply non-monotonic changes in the amount of carbon sequestered. Importantly, retarded deforestation can sequester carbon at substantially lower costs than increased forestation. These results depend in part on the time profile of sequestration and the amount of carbon released upon harvest, both of which may vary by species, geographic location, and management regime, and are subject to scientific uncertainty.

Suggested Citation

  • Stavins, Robert & Newell, Richard, 1999. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," RFF Working Paper Series dp-99-31-rev, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-99-31-rev
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-99-31-REV.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stavins, Robert, 2004. "Environmental Economics," RFF Working Paper Series dp-04-54, Resources for the Future.
    2. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING‐CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    3. Stavins, Robert N., 1990. "Alternative renewable resource strategies: A simulation of optimal use," Journal of Environmental Economics and Management, Elsevier, vol. 19(2), pages 143-159, September.
    4. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    5. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    6. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-66.
    7. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    8. J. Callaway & Bruce McCarl, 1996. "The economic consequences of substituting carbon payments for crop subsidies in U.S. agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 7(1), pages 15-43, January.
    9. G. Cornelis van Kooten & Louise M. Arthur & W. R. Wilson, 1992. "Potential to Sequester Carbon in Canadian Forests: Some Economic Considerations," Canadian Public Policy, University of Toronto Press, vol. 18(2), pages 127-138, June.
    10. DANIEL J. DUDEK & ALICE LeBLANC, 1990. "Offsetting New Co2 Emissions: A Rational First Greenhouse Policy Step," Contemporary Economic Policy, Western Economic Association International, vol. 8(3), pages 29-42, July.
    11. Richard L. Scheaffer, 1997. "Discussion," International Statistical Review, International Statistical Institute, vol. 65(2), pages 156-158, August.
    12. Stavins, Robert N & Jaffe, Adam B, 1990. "Unintended Impacts of Public Investments on Private Decisions: The Depletion of Forested Wetlands," American Economic Review, American Economic Association, vol. 80(3), pages 337-352, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    2. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    3. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.
    4. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," HWWA Discussion Papers 241, Hamburg Institute of International Economics (HWWA).
    5. Robert N. Stavins, 1998. "A Methodological Investigation of the Costs of Carbon Sequestration," Journal of Applied Economics, Taylor & Francis Journals, vol. 1(2), pages 231-277, November.
    6. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    9. Adetoye, Ayoade Matthew & Okojie, Luke O. & Akerele, Dare, 2018. "Forest carbon sequestration supply function for African countries: An econometric modelling approach," Forest Policy and Economics, Elsevier, vol. 90(C), pages 59-66.
    10. Yemshanov, Denys & McCarney, Geoffrey R. & Hauer, Grant & Luckert, M.K. (Marty) & Unterschultz, Jim & McKenney, Daniel W., 2015. "A real options-net present value approach to assessing land use change: A case study of afforestation in Canada," Forest Policy and Economics, Elsevier, vol. 50(C), pages 327-336.
    11. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    12. Kim, Taeyoung & Langpap, Christian, 2016. "Agricultural landowners’ response to incentives for afforestation," Resource and Energy Economics, Elsevier, vol. 43(C), pages 93-111.
    13. Taeyoung Kim & Christian Langpap, 2015. "Incentives for Carbon Sequestration Using Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 491-520, November.
    14. Hennessy, David A. & Saak, Alexander E., 2003. "State-Contingent Demand for Herbicide-Tolerance Seed Trait," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-14, April.
    15. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    16. Antle, John M. & Capalbo, Susan Marie & Mooney, Sian & Elliott, Edward T. & Paustian, Keith H., 2001. "Economic Analysis Of Agricultural Soil Carbon Sequestration: An Integrated Assessment Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-24, December.
    17. Lehtonen, Heikki & Peltola, Jukka & Sinkkonen, Marko, 2006. "Co-effects of climate policy and agricultural policy on regional agricultural viability in Finland," Agricultural Systems, Elsevier, vol. 88(2-3), pages 472-493, June.
    18. Elberg Nielsen, Anne Sofie & Plantinga, Andrew J. & Alig, Ralph J., 2014. "Mitigating climate change through afforestation: New cost estimates for the United States," Resource and Energy Economics, Elsevier, vol. 36(1), pages 83-98.
    19. Alig, Ralph J. & Adams, Darius M. & McCarl, Bruce A., 1998. "Ecological and economic impacts of forest policies: interactions across forestry and agriculture," Ecological Economics, Elsevier, vol. 27(1), pages 63-78, October.
    20. Stavins, Robert, 2000. "A Two-Way Street Between Environmental Economics and Public Policy," Working Paper Series rwp00-005, Harvard University, John F. Kennedy School of Government.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-99-31-rev. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.