IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/329.html
   My bibliography  Save this paper

Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management

Author

Listed:
  • Renan Ulrich Goetz
  • Natali Hritonenko
  • Ruben Mur
  • Àngels Xabadia
  • Yuri Yatsenko

Abstract

The Kyoto protocol allows Annex I countries to deduct carbon sequestered by land use, land-use change and forestry from their national carbon emissions. Thornley and Cannell (2000) demonstrated that the objectives of maximizing timber and carbon sequestration are not complementary. Based on this finding, this paper determines the optimal selective management regime taking into account the underlying biophysical and economic processes. The results show that the net benefits of carbon storage only compensate the decrease in net benefits of timber production once the carbon price has exceeded a certain threshold value. The sequestration costs are significantly lower than previous estimates.

Suggested Citation

  • Renan Ulrich Goetz & Natali Hritonenko & Ruben Mur & Àngels Xabadia & Yuri Yatsenko, 2008. "Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management," Working Papers 329, Barcelona Graduate School of Economics.
  • Handle: RePEc:bge:wpaper:329
    as

    Download full text from publisher

    File URL: http://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/329.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    2. Tassone, Valentina C. & Wesseler, Justus & Nesci, Francesco S., 2004. "Diverging incentives for afforestation from carbon sequestration: an economic analysis of the EU afforestation program in the south of Italy," Forest Policy and Economics, Elsevier, vol. 6(6), pages 567-578, October.
    3. Creedy, John & Wurzbacher, Anke D., 2001. "The economic value of a forested catchment with timber, water and carbon sequestration benefits," Ecological Economics, Elsevier, vol. 38(1), pages 71-83, July.
    4. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    5. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    6. Xabadia, Angels & Goetz, Renan U., 2010. "The optimal selective logging regime and the Faustmann formula," Journal of Forest Economics, Elsevier, vol. 16(1), pages 63-82, January.
    7. Renan Goetz & Angels Xabadia & Elena Calvo, 2011. "Optimal Forest Management in the Presence of Intraspecific Competition," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(3), pages 151-171.
    8. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    9. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Kyoto protocol; forest management; selective logging; carbon sequestration; dynamic optimization.;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:329. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruno Guallar). General contact details of provider: http://edirc.repec.org/data/bargses.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.