IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v140y2012i2p875-887.html
   My bibliography  Save this article

Multi-step sales forecasting in automotive industry based on structural relationship identification

Author

Listed:
  • Sa-ngasoongsong, Akkarapol
  • Bukkapatnam, Satish T.S.
  • Kim, Jaebeom
  • Iyer, Parameshwaran S.
  • Suresh, R.P.

Abstract

Forecasting sales and demand over 6–24 month horizon is crucial for planning the production processes of automotive and other complex product industries (e.g., electronics and heavy equipment) where typical concept-to-release times are 12–60 month long. However, nonlinear and nonstationary evolution and dependencies with diverse macroeconomic variables hinder accurate long-term prediction of the future of automotive sales. In this paper, a structural relationship identification methodology that uses a battery of statistical unit root, weakly exogeneity, Granger-causality and cointegration tests, is presented to identify the dynamic couplings among automobile sales and economic indicators. Our empirical analysis indicates that automobile sales at segment levels have a long-run equilibrium relationship (cointegration) with identified economic indicators. A vector error correction model (VECM) of multi-segment automobile sales was estimated based on impulse response functions to quantify long-term impact of these economic indicators on sales. Comparisons of prediction accuracy demonstrate that VECM model outperforms other classical and advanced time-series techniques. The empirical results suggest that VECM can significantly improve prediction accuracy of automotive sales for 12-month ahead prediction in terms of RMSE (42.73%) and MAPE (42.25%), compared to the classical time series techniques.

Suggested Citation

  • Sa-ngasoongsong, Akkarapol & Bukkapatnam, Satish T.S. & Kim, Jaebeom & Iyer, Parameshwaran S. & Suresh, R.P., 2012. "Multi-step sales forecasting in automotive industry based on structural relationship identification," International Journal of Production Economics, Elsevier, vol. 140(2), pages 875-887.
  • Handle: RePEc:eee:proeco:v:140:y:2012:i:2:p:875-887
    DOI: 10.1016/j.ijpe.2012.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312003167
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter McManus, 2007. "The Link Between Gasoline Prices and Vehicle Sales," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 42(1), pages 53-60, January.
    2. Granger, C. W. J., 1988. "Causality, cointegration, and control," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 551-559.
    3. Johansen, Søren, 1995. "A Stastistical Analysis of Cointegration for I(2) Variables," Econometric Theory, Cambridge University Press, vol. 11(1), pages 25-59, February.
    4. Urbain, Jean-Pierre, 1992. "On Weak Exogeneity in Error Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(2), pages 187-207, May.
    5. G. Dekimpe, Marnik & Hanssens, Dominique M. & Silva-Risso, Jorge M., 1998. "Long-run effects of price promotions in scanner markets," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 269-291, November.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Armstrong, J. Scott & Morwitz, Vicki G. & Kumar, V., 2000. "Sales forecasts for existing consumer products and services: Do purchase intentions contribute to accuracy?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 383-397.
    8. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    9. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
    10. Vincent R. Nijs & Marnik G. Dekimpe & Jan-Benedict E.M. Steenkamps & Dominique M. Hanssens, 2001. "The Category-Demand Effects of Price Promotions," Marketing Science, INFORMS, vol. 20(1), pages 1-22, September.
    11. Alan Greenspan & Darrel Cohen, 1999. "Motor Vehicle Stocks, Scrappage, And Sales," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 369-383, August.
    12. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    13. Greenslade, Jennifer V. & Hall, Stephen G. & Henry, S. G. Brian, 2002. "On the identification of cointegrated systems in small samples: a modelling strategy with an application to UK wages and prices," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1517-1537, August.
    14. Marnik G. Dekimpe & Dominique M. Hanssens, 1995. "The Persistence of Marketing Effects on Sales," Marketing Science, INFORMS, vol. 14(1), pages 1-21.
    15. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    16. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    17. Granger, Clive W. J. & Huangb, Bwo-Nung & Yang, Chin-Wei, 2000. "A bivariate causality between stock prices and exchange rates: evidence from recent Asianflu," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(3), pages 337-354.
    18. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    19. Samarjit Das, 2003. "Modelling money, price and output in India: a vector autoregressive and moving average (VARMA) approach," Applied Economics, Taylor & Francis Journals, vol. 35(10), pages 1219-1225.
    20. Jan R. Landwehr & Aparna A. Labroo & Andreas Herrmann, 2011. "Gut Liking for the Ordinary: Incorporating Design Fluency Improves Automobile Sales Forecasts," Marketing Science, INFORMS, vol. 30(3), pages 416-429, 05-06.
    21. Johansen, Soren, 1992. "Testing weak exogeneity and the order of cointegration in UK money demand data," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 313-334, June.
    22. Berkovec, James, 1985. "Forecasting automobile demand using disaggregate choice models," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 315-329, August.
    23. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    24. Luxhoj, James T. & Riis, Jens O. & Stensballe, Brian, 1996. "A hybrid econometric--neural network modeling approach for sales forecasting," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 175-192, June.
    25. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    26. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    27. Mannering, Fred L. & Train, Kenneth, 1985. "Recent directions in automobile demand modeling," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 265-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dean Fantazzini & Nikita Kolodin, 2020. "Does the Hashrate Affect the Bitcoin Price?," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(11), pages 1-29, October.
    2. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    3. Ueda, Renan Mitsuo & Souza, Adriano Mendonça & Menezes, Rui Manuel Campilho Pereira, 2020. "How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: A VAR-based model and cluster analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    5. Konstantakis, Konstantinos N. & Milioti, Christina & Michaelides, Panayotis G., 2017. "Modeling the dynamic response of automobile sales in troubled times: A real-time Vector Autoregressive analysis with causality testing for Greece," Transport Policy, Elsevier, vol. 59(C), pages 75-81.
    6. Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    2. Panayiotis Diamantis & Dimitris Georgoutsos & George Kouretas, 2001. "The Monetary Approach in the Presence of I(2) Components: A Cointegration Analysis of the Official and Black Market for Foreign Currency in Latin America," Working Papers 0108, University of Crete, Department of Economics.
    3. Ansgar Belke & Robert Czudaj, 2010. "Is Euro Area Money Demand (Still) Stable? Cointegrated VAR Versus Single Equation Techniques," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 56(4), pages 285-315.
    4. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    5. Panayiotis Diamandis & Georgios Kouretas, 1995. "Cointegration and market efficiency: a time series analysis of the Greek drachma," Applied Economics Letters, Taylor & Francis Journals, vol. 2(8), pages 271-277.
    6. Papież, Monika & Śmiech, Sławomir, 2015. "Dynamic steam coal market integration: Evidence from rolling cointegration analysis," Energy Economics, Elsevier, vol. 51(C), pages 510-520.
    7. John L. Glascock & Wikrom Prombutr & Ying Zhang & Tingyu Zhou, 2018. "Can Investors Hold More Real Estate? Evidence from Statistical Properties of Listed REIT versus Non-REIT Property Companies in the U.S," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 274-302, February.
    8. Dimitris Georgoutsos & Georgios Kouretas, 2004. "A Multivariate I(2) cointegration analysis of German hyperinflation," Applied Financial Economics, Taylor & Francis Journals, vol. 14(1), pages 29-41.
    9. Sunil Sharma & Neil R. Ericsson, 1998. "Broad money demand and financial liberalization in Greece," Empirical Economics, Springer, vol. 23(3), pages 417-436.
    10. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    11. Kyriakos Emmanouilidis & Christos Karpetis, 2020. "The Defense–Growth Nexus: A Review of Time Series Methods and Empirical Results," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(1), pages 86-104, January.
    12. Dimitris Georgoutsos & George Kouretas, 2001. "Common Stochastic Trends In International Stock Markets: Testing In An Integrated Framework," Working Papers 0104, University of Crete, Department of Economics.
    13. Naser, Hanan, 2015. "Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies," Energy, Elsevier, vol. 89(C), pages 421-434.
    14. Rajesh Mohnot, 2020. "Examining Granger Causality in the Behavioral Reactions of Institutional Investors— Evidence from India," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-21, January.
    15. Xu, Haifeng & Hamori, Shigeyuki, 2012. "Dynamic linkages of stock prices between the BRICs and the United States: Effects of the 2008–09 financial crisis," Journal of Asian Economics, Elsevier, vol. 23(4), pages 344-352.
    16. Yap, Wei Yim & Lam, Jasmine S.L., 2006. "Competition dynamics between container ports in East Asia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(1), pages 35-51, January.
    17. M. T. Alguacil & V. Orts, 2003. "Inward Foreign Direct Investment and Imports in Spain," International Economic Journal, Taylor & Francis Journals, vol. 17(3), pages 19-38.
    18. Frank Asche, 2001. "Testing the effect of an anti-dumping duty: The US salmon market," Empirical Economics, Springer, vol. 26(2), pages 343-355.
    19. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    20. Jiranyakul, Komain, 2009. "Economic Forces and the Thai Stock Market, 1993-2007," MPRA Paper 57368, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:140:y:2012:i:2:p:875-887. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.