IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v131y2011i1p204-214.html
   My bibliography  Save this article

The role of the forecasting process in improving forecast accuracy and operational performance

Author

Listed:
  • Danese, Pamela
  • Kalchschmidt, Matteo

Abstract

Several operations decisions are based on proper forecast of future demand. For this reason, manufacturing companies consider forecasting a crucial process for effectively guiding several activities and research has devoted particular attention to this issue. This paper investigates the impact of how forecasting is conducted on forecast accuracy and operational performances (i.e. cost and delivery performances). Attention is here paid on three factors that characterize the forecasting process: whether structured techniques are adopted, whether information from different sources is collected to elaborate forecasts, and the extent to which forecasting is used to support decision-making processes. Analyses are conducted by means of data provided by the fourth edition of the Global Manufacturing Research Group survey. Data was collected from 343 companies belonging to several manufacturing industries from six different countries. Results show that companies adopting a structured forecasting process can improve their operational performances not simply because forecast accuracy increases. This paper highlights the importance of a proper forecasting-process design, that should be coherent with how users intend to exploit forecast results and with the aim that should be achieved, that is not necessarily improving forecast accuracy.

Suggested Citation

  • Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
  • Handle: RePEc:eee:proeco:v:131:y:2011:i:1:p:204-214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00328-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nada R. Sanders & Karl B. Manrodt, 1994. "Forecasting Practices in US Corporations: Survey Results," Interfaces, INFORMS, vol. 24(2), pages 92-100, April.
    2. Klassen, Robert D. & Flores, Benito E., 2001. "Forecasting practices of Canadian firms: Survey results and comparisons," International Journal of Production Economics, Elsevier, vol. 70(2), pages 163-174, March.
    3. Remus, William & O'Connor, Marcus & Griggs, Kenneth, 1995. "Does reliable information improve the accuracy of judgmental forecasts?," International Journal of Forecasting, Elsevier, vol. 11(2), pages 285-293, June.
    4. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    5. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    6. Kalchschmidt, Matteo & Zotteri, Giulio & Verganti, Roberto, 2003. "Inventory management in a multi-echelon spare parts supply chain," International Journal of Production Economics, Elsevier, vol. 81(1), pages 397-413, January.
    7. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    8. Everette S. Gardner, 1990. "Evaluating Forecast Performance in an Inventory Control System," Management Science, INFORMS, vol. 36(4), pages 490-499, April.
    9. Moon, Mark A. & Mentzer, John T. & Smith, Carlo D., 2003. "Conducting a sales forecasting audit," International Journal of Forecasting, Elsevier, vol. 19(1), pages 5-25.
    10. Kevin Zhu & Kenneth L. Kraemer, 2002. "e-Commerce Metrics for Net-Enhanced Organizations: Assessing the Value of e-Commerce to Firm Performance in the Manufacturing Sector," Information Systems Research, INFORMS, vol. 13(3), pages 275-295, September.
    11. M C Hughes, 2001. "Forecasting practice: organisational issues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(2), pages 143-149, February.
    12. Diamantopoulos, A., 2002. "Research on Forecasting," International Journal of Forecasting, Elsevier, vol. 18(3), pages 479-480.
    13. Lawrence, Michael & O'Connor, Marcus & Edmundson, Bob, 2000. "A field study of sales forecasting accuracy and processes," European Journal of Operational Research, Elsevier, vol. 122(1), pages 151-160, April.
    14. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    15. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
    16. Dalrymple, Douglas J., 1987. "Sales forecasting practices: Results from a United States survey," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 379-391.
    17. Charles C. Holt & Franco Modigliani & Herbert A. Simon, 1955. "A Linear Decision Rule for Production and Employment Scheduling," Management Science, INFORMS, vol. 2(1), pages 1-30, October.
    18. Moon, Mark A. & Mentzer, John T. & Smith, Carlo D. & Garver, Michael S., 1998. "Seven keys to better forecasting," Business Horizons, Elsevier, vol. 41(5), pages 44-52.
    19. T. S. Lee & Everett E. Adam, Jr., 1986. "Forecasting Error Evaluation in Material Requirements Planning (MRP) Production-Inventory Systems," Management Science, INFORMS, vol. 32(9), pages 1186-1205, September.
    20. Sanders, Nada R., 2009. "Comments on "Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning"," International Journal of Forecasting, Elsevier, vol. 25(1), pages 24-26.
    21. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "Forecasting practices: Empirical evidence and a framework for research," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 84-99, July.
    22. Kekre, Sunder & Morton, Thomas E. & Smunt, Timothy L., 1990. "Forecasting using partially known demands," International Journal of Forecasting, Elsevier, vol. 6(1), pages 115-125.
    23. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    24. Enns, S. T., 2002. "MRP performance effects due to forecast bias and demand uncertainty," European Journal of Operational Research, Elsevier, vol. 138(1), pages 87-102, April.
    25. Wright, George & Lawrence, Michael J. & Collopy, Fred, 1996. "The role and validity of judgment in forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 1-8, March.
    26. Franses, Philip Hans & Legerstee, Rianne, 2009. "Properties of expert adjustments on model-based SKU-level forecasts," International Journal of Forecasting, Elsevier, vol. 25(1), pages 35-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    2. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    3. Alexander Burck & Martin Glaum & Kati Schnürer, 2018. "Cash-Flow-Planung – Anforderungen und praktische Umsetzung im internationalen Konzern [Cash-Flow Planning – Requirements and Implementation in a Multinational Corporation]," Schmalenbach Journal of Business Research, Springer, vol. 70(4), pages 393-425, December.
    4. Luther Yuong Qai Chong & Thien Sang Lim, 2022. "Pull and Push Factors of Data Analytics Adoption and Its Mediating Role on Operational Performance," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    5. Kalchschmidt, Matteo, 2012. "Best practices in demand forecasting: Tests of universalistic, contingency and configurational theories," International Journal of Production Economics, Elsevier, vol. 140(2), pages 782-793.
    6. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
    7. Sa-ngasoongsong, Akkarapol & Bukkapatnam, Satish T.S. & Kim, Jaebeom & Iyer, Parameshwaran S. & Suresh, R.P., 2012. "Multi-step sales forecasting in automotive industry based on structural relationship identification," International Journal of Production Economics, Elsevier, vol. 140(2), pages 875-887.
    8. Scarpel, Rodrigo Arnaldo, 2015. "An integrated mixture of local experts model for demand forecasting," International Journal of Production Economics, Elsevier, vol. 164(C), pages 35-42.
    9. Manikas, Andrew S. & Patel, Pankaj C., 2016. "Managing sales surprise: The role of operational slack and volume flexibility," International Journal of Production Economics, Elsevier, vol. 179(C), pages 101-116.
    10. Bortolotti, Thomas & Danese, Pamela & Flynn, Barbara B. & Romano, Pietro, 2015. "Leveraging fitness and lean bundles to build the cumulative performance sand cone model," International Journal of Production Economics, Elsevier, vol. 162(C), pages 227-241.
    11. Jan Ondrus & Tung Bui & Yves Pigneur, 2015. "A Foresight Support System Using MCDM Methods," Group Decision and Negotiation, Springer, vol. 24(2), pages 333-358, March.
    12. Goodwin, Paul & Gönül, M. Sinan & Önkal, Dilek, 2019. "When providing optimistic and pessimistic scenarios can be detrimental to judgmental demand forecasts and production decisions," European Journal of Operational Research, Elsevier, vol. 273(3), pages 992-1004.
    13. Bortolotti, Thomas & Boscari, Stefania & Danese, Pamela, 2015. "Successful lean implementation: Organizational culture and soft lean practices," International Journal of Production Economics, Elsevier, vol. 160(C), pages 182-201.
    14. Danese, Pamela & Romano, Pietro & Formentini, Marco, 2013. "The impact of supply chain integration on responsiveness: The moderating effect of using an international supplier network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 125-140.
    15. Bocca, Felipe Ferreira & Rodrigues, Luiz Henrique Antunes & Arraes, Nilson Antonio Modesto, 2015. "When do I want to know and why? Different demands on sugarcane yield predictions," Agricultural Systems, Elsevier, vol. 135(C), pages 48-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The impact of forecasting on companies' performance: Analysis in a multivariate setting," International Journal of Production Economics, Elsevier, vol. 133(1), pages 458-469, September.
    2. Kalchschmidt, Matteo, 2012. "Best practices in demand forecasting: Tests of universalistic, contingency and configurational theories," International Journal of Production Economics, Elsevier, vol. 140(2), pages 782-793.
    3. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
    4. Van den Broeke, Maud & De Baets, Shari & Vereecke, Ann & Baecke, Philippe & Vanderheyden, Karlien, 2019. "Judgmental forecast adjustments over different time horizons," Omega, Elsevier, vol. 87(C), pages 34-45.
    5. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    6. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    7. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    8. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    9. Syntetos, Aris A. & Kholidasari, Inna & Naim, Mohamed M., 2016. "The effects of integrating management judgement into OUT levels: In or out of context?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 853-863.
    10. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    11. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    12. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    13. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    14. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. R Fildes & B Kingsman, 2011. "Incorporating demand uncertainty and forecast error in supply chain planning models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 483-500, March.
    17. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    18. Goodwin, Paul, 2002. "Integrating management judgment and statistical methods to improve short-term forecasts," Omega, Elsevier, vol. 30(2), pages 127-135, April.
    19. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    20. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:131:y:2011:i:1:p:204-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.