IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v133y2011i1p458-469.html
   My bibliography  Save this article

The impact of forecasting on companies' performance: Analysis in a multivariate setting

Author

Listed:
  • Danese, Pamela
  • Kalchschmidt, Matteo

Abstract

Over the years, practitioners and researchers have devoted their attention to forecasting techniques and methods that can be adopted to improve companies' performance. However, forecasting techniques alone are not enough since companies should also consider several other issues associated with forecasting process management, e.g. how companies collect and use information on the market, or how the forecast is used in different decision-making processes. It is also important to understand the existence of interaction effects between these different forecasting variables, as they could determine a positive additional synergistic effect on companies' performance. This paper aims to investigate what relevant forecasting variables should be considered to improve companies' performance, and whether some forecasting variables can interact and influence performance with a synergistic effect. Analyses are conducted by means of data collected by the Global Manufacturing Research Group (GMRG). Data from a sample of 343 manufacturing companies in 6 different countries demonstrate that when companies intend to improve cost and delivery performances, they should devote their attention to all the different forecasting variables. In addition, the results found reveal the existence of positive interaction effects between the collection and use of information on the market and the other forecasting variables, as well as the existence of a negative interaction effect between the adoption of forecasting techniques and the use of forecasts in several decision-making processes. These results have important implications for managers as they provide guidance on how to lever on the different forecasting variables to maximize companies' performance.

Suggested Citation

  • Danese, Pamela & Kalchschmidt, Matteo, 2011. "The impact of forecasting on companies' performance: Analysis in a multivariate setting," International Journal of Production Economics, Elsevier, vol. 133(1), pages 458-469, September.
  • Handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:458-469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527310001374
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moon, Mark A. & Mentzer, John T. & Smith, Carlo D. & Garver, Michael S., 1998. "Seven keys to better forecasting," Business Horizons, Elsevier, vol. 41(5), pages 44-52.
    2. Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
    3. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    4. Remus, William & O'Connor, Marcus & Griggs, Kenneth, 1995. "Does reliable information improve the accuracy of judgmental forecasts?," International Journal of Forecasting, Elsevier, vol. 11(2), pages 285-293, June.
    5. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    6. GĂ©rard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    7. Sanders, Nada R., 2009. "Comments on "Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning"," International Journal of Forecasting, Elsevier, vol. 25(1), pages 24-26.
    8. Kalchschmidt, Matteo & Zotteri, Giulio & Verganti, Roberto, 2003. "Inventory management in a multi-echelon spare parts supply chain," International Journal of Production Economics, Elsevier, vol. 81(1), pages 397-413, January.
    9. Zotteri, Giulio & Verganti, Roberto, 2001. "Multi-level approaches to demand management in complex environments: an analytical model," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 221-233, May.
    10. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "Forecasting practices: Empirical evidence and a framework for research," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 84-99, July.
    11. Bartezzaghi, Emilio & Verganti, Roberto & Zotteri, Giulio, 1999. "A simulation framework for forecasting uncertain lumpy demand," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 499-510, March.
    12. Enns, S. T., 2002. "MRP performance effects due to forecast bias and demand uncertainty," European Journal of Operational Research, Elsevier, vol. 138(1), pages 87-102, April.
    13. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    14. Wright, George & Lawrence, Michael J. & Collopy, Fred, 1996. "The role and validity of judgment in forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 1-8, March.
    15. Lawrence, Michael & O'Connor, Marcus & Edmundson, Bob, 2000. "A field study of sales forecasting accuracy and processes," European Journal of Operational Research, Elsevier, vol. 122(1), pages 151-160, April.
    16. Mentzer, John T. & Bienstock, Carol C. & Kahn, Kenneth B., 1999. "Benchmarking sales forecasting management," Business Horizons, Elsevier, vol. 42(3), pages 48-56.
    17. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    18. Davis, Donna F. & Mentzer, John T., 2007. "Organizational factors in sales forecasting management," International Journal of Forecasting, Elsevier, vol. 23(3), pages 475-495.
    19. Dalrymple, Douglas J., 1987. "Sales forecasting practices: Results from a United States survey," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:reaccs:v:22:y:2017:i:3:d:10.1007_s11142-017-9396-0 is not listed on IDEAS
    2. Kalchschmidt, Matteo, 2012. "Best practices in demand forecasting: Tests of universalistic, contingency and configurational theories," International Journal of Production Economics, Elsevier, vol. 140(2), pages 782-793.
    3. Kull, Thomas J. & Yan, Tingting & Liu, Zhongzhi & Wacker, John G., 2014. "The moderation of lean manufacturing effectiveness by dimensions of national culture: Testing practice-culture congruence hypotheses," International Journal of Production Economics, Elsevier, vol. 153(C), pages 1-12.
    4. Wiengarten, Frank & Pagell, Mark, 2012. "The importance of quality management for the success of environmental management initiatives," International Journal of Production Economics, Elsevier, vol. 140(1), pages 407-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:458-469. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.