IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i1p298-313.html
   My bibliography  Save this article

Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting

Author

Listed:
  • Alvarado-Valencia, Jorge
  • Barrero, Lope H.
  • Önkal, Dilek
  • Dennerlein, Jack T.

Abstract

Expert knowledge elicitation lies at the core of judgmental forecasting—a domain that relies fully on the power of such knowledge and its integration into forecasting. Using experts in a demand forecasting framework, this work aims to compare the accuracy improvements and forecasting performances of three judgmental integration methods. To do this, a field study was conducted with 31 experts from four companies. The methods compared were the judgmental adjustment, the 50–50 combination, and the divide-and-conquer. Forecaster expertise, the credibility of system forecasts and the need to rectify system forecasts were also assessed, and mechanisms for performing this assessment were considered. When (a) a forecaster’s relative expertise was high, (b) the relative credibility of the system forecasts was low, and (c) the system forecasts had a strong need of correction, judgmental adjustment improved the accuracy relative to both the other integration methods and the system forecasts. Experts with higher levels of expertise showed higher adjustment frequencies. Our results suggest that judgmental adjustment promises to be valuable in the long term if adequate conditions of forecaster expertise and the credibility of system forecasts are met.

Suggested Citation

  • Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:298-313
    DOI: 10.1016/j.ijforecast.2015.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207016300140
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Wing Yee & Goodwin, Paul & Fildes, Robert & Nikolopoulos, Konstantinos & Lawrence, Michael, 2007. "Providing support for the use of analogies in demand forecasting tasks," International Journal of Forecasting, Elsevier, vol. 23(3), pages 377-390.
    2. Goodwin, Paul, 2000. "Correct or combine? Mechanically integrating judgmental forecasts with statistical methods," International Journal of Forecasting, Elsevier, vol. 16(2), pages 261-275.
    3. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    4. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    5. Benson, P. George & Onkal, Dilek, 1992. "The effects of feedback and training on the performance of probability forecasters," International Journal of Forecasting, Elsevier, vol. 8(4), pages 559-573, December.
    6. repec:eee:reensy:v:96:y:2011:i:10:p:1292-1310 is not listed on IDEAS
    7. Goodwin, Paul & Sinan Gönül, M. & Önkal, Dilek, 2013. "Antecedents and effects of trust in forecasting advice," International Journal of Forecasting, Elsevier, vol. 29(2), pages 354-366.
    8. Sinan Gönül & Dilek Önkal & Paul Goodwin, 2009. "Expectations, use and judgmental adjustment of external financial and economic forecasts: an empirical investigation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 19-37.
    9. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    10. Goodwin, Paul, 2005. "Providing support for decisions based on time series information under conditions of asymmetric loss," European Journal of Operational Research, Elsevier, vol. 163(2), pages 388-402, June.
    11. Goodwin, Paul & Fildes, Robert & Lawrence, Michael & Stephens, Greg, 2011. "Restrictiveness and guidance in support systems," Omega, Elsevier, vol. 39(3), pages 242-253, June.
    12. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    13. Franses, Philip Hans & Legerstee, Rianne, 2013. "Do statistical forecasting models for SKU-level data benefit from including past expert knowledge?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 80-87.
    14. Wright, George & Lawrence, Michael J. & Collopy, Fred, 1996. "The role and validity of judgment in forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 1-8, March.
    15. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    16. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    17. Webby, Richard & O'Connor, Marcus & Edmundson, Bob, 2005. "Forecasting support systems for the incorporation of event information: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 21(3), pages 411-423.
    18. Bonaccio, Silvia & Dalal, Reeshad S., 2006. "Advice taking and decision-making: An integrative literature review, and implications for the organizational sciences," Organizational Behavior and Human Decision Processes, Elsevier, vol. 101(2), pages 127-151, November.
    19. Lim, Joa Sang & O'Connor, Marcus, 1996. "Judgmental forecasting with time series and causal information," International Journal of Forecasting, Elsevier, vol. 12(1), pages 139-153, March.
    20. Goodwin, Paul, 2002. "Integrating management judgment and statistical methods to improve short-term forecasts," Omega, Elsevier, vol. 30(2), pages 127-135, April.
    21. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    22. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolger, Fergus & Wright, George, 2017. "Use of expert knowledge to anticipate the future: Issues, analysis and directions," International Journal of Forecasting, Elsevier, vol. 33(1), pages 230-243.
    2. repec:eee:ejores:v:274:y:2019:i:2:p:574-600 is not listed on IDEAS
    3. repec:eee:intfor:v:35:y:2019:i:1:p:144-156 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:298-313. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.