IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v86y2015icp562-573.html
   My bibliography  Save this article

Net energy analysis in a Ramsey–Hotelling growth model

Author

Listed:
  • Macías, Arturo
  • Matilla-García, Mariano

Abstract

This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented.

Suggested Citation

  • Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
  • Handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:562-573
    DOI: 10.1016/j.enpol.2015.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515300392
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, Open Access Journal, vol. 2(1), pages 1-23, January.
    2. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    3. Lance J. Bachmeier & James M. Griffin, 2006. "Testing for Market Integration: Crude Oil, Coal, and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 55-72.
    4. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    5. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    6. Bentolila Samuel & Saint-Paul Gilles, 2003. "Explaining Movements in the Labor Share," The B.E. Journal of Macroeconomics, De Gruyter, vol. 3(1), pages 1-33, October.
    7. Stern, David I., 2010. "Energy quality," Ecological Economics, Elsevier, vol. 69(7), pages 1471-1478, May.
    8. Reynolds, Douglas B., 1999. "The mineral economy: how prices and costs can falsely signal decreasing scarcity," Ecological Economics, Elsevier, vol. 31(1), pages 155-166, October.
    9. Barro, Robert J, 1999. "Notes on Growth Accounting," Journal of Economic Growth, Springer, vol. 4(2), pages 119-137, June.
    10. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 29-45.
    11. Saaty, Thomas & Ma, Fred & Blair, Peter, 1977. "Operational gaming for energy policy analysis," Energy Policy, Elsevier, vol. 5(1), pages 63-75, March.
    12. David I. Stern, 2012. "Ecological Economics," Crawford School Research Papers 1203, Crawford School of Public Policy, The Australian National University.
    13. Sweeney, James L, 1984. "The Response of Energy Demand to Higher Prices: What Have We Learned?," American Economic Review, American Economic Association, vol. 74(2), pages 31-37, May.
    14. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    15. R. Stresing & D. Lindenberger & R. Kümmel, 2008. "Cointegration of output, capital, labor, and energy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(2), pages 279-287, November.
    16. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    17. Stern, David I., 2010. "The Role of Energy in Economic Growth," Working Papers 249380, Australian National University, Centre for Climate Economics & Policy.
    18. Phillips, W. G. B. & Edwards, D. P., 1976. "Metal prices as a function of ore grade," Resources Policy, Elsevier, vol. 2(3), pages 167-178, September.
    19. Li Hong & Pei Dong, Zhang & Chunyu, He & Wang Gang, 2007. "Evaluating the effects of embodied energy in international trade on ecological footprint in China," Ecological Economics, Elsevier, vol. 62(1), pages 136-148, April.
    20. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    21. Martin B. Zimmerman, 1977. "Modeling Depletion in a Mineral Industry: The Case of Coal," Bell Journal of Economics, The RAND Corporation, vol. 8(1), pages 41-65, Spring.
    22. Patrick J. Kehoe & Andrew Atkeson, 1999. "Models of Energy Use: Putty-Putty versus Putty-Clay," American Economic Review, American Economic Association, vol. 89(4), pages 1028-1043, September.
    23. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
    24. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    25. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 123-137.
    26. Bassi, Andrea M. & Powers, Robert & Schoenberg, William, 2010. "An integrated approach to energy prospects for North America and the rest of the world," Energy Economics, Elsevier, vol. 32(1), pages 30-42, January.
    27. Philip F. Henshaw & Carey King & Jay Zarnikau, 2011. "System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems," Sustainability, MDPI, Open Access Journal, vol. 3(10), pages 1-36, October.
    28. Roberto F. Aguilera & Roderick G. Eggert & Gustavo Lagos C.C. & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 141-174.
    29. Jean-Baptiste Lesourd & Yvon Gousty, 1981. "Bases économiques et thermodynamiques des techniques de comptabilité de l'énergie," Revue d'Économie Industrielle, Programme National Persée, vol. 15(1), pages 44-59.
    30. Shinkuma, Takayoshi & Nishiyama, Takashi, 2000. "The grade selection rule of the metal mines; an empirical study on copper mines," Resources Policy, Elsevier, vol. 26(1), pages 31-38, March.
    31. Jack P. Manno, 2011. "Looking for a Silver Lining: The Possible Positives of Declining Energy Return on Investment (EROI)," Sustainability, MDPI, Open Access Journal, vol. 3(11), pages 1-9, October.
    32. Daniel Danxia Xie, 2011. "A Generalized Fact and Model of Long-Run Economic Growth: Kaldor Fact as a Special Case," Working Paper Series WP11-4, Peterson Institute for International Economics.
    33. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," Review of Economic Studies, Oxford University Press, vol. 32(3), pages 233-240.
    34. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    35. Dale Jorgenson & J. Steven Landefeld & William D. Nordhaus, 2006. "A New Architecture for the U.S. National Accounts," NBER Books, National Bureau of Economic Research, Inc, number jorg06-1, December.
    36. Cutter J. Cleveland & Robert K. Kaufmann, 1991. "Forecasting Ultimate Oil Recovery and Its Rate of Production: Incorporating Economic Forces into the Models of M. King Hubbert," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 17-46.
    37. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    38. Anderson, R. K. & Moroney, J. R., 1993. "Morishima elasticities of substitution with nested production functions," Economics Letters, Elsevier, vol. 42(2-3), pages 159-166.
    39. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    40. Stephen P. Holland, 2008. "Modeling Peak Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 61-80.
    41. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, Open Access Journal, vol. 3(10), pages 1-20, October.
    42. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    43. Alan S. Manne, 1974. "Waiting for the Breeder," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 47-65.
    44. Battisti, Riccardo & Corrado, Annalisa, 2005. "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology," Energy, Elsevier, vol. 30(7), pages 952-967.
    45. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
    46. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    EROI; Net energy analysis; Growth; Ramsey–Hotelling; Depletion;

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:562-573. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.