IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v118y2023ics0140988322006119.html
   My bibliography  Save this article

Scrutinizing commodity markets by quantile spillovers: A case study of the Australian economy

Author

Listed:
  • Asadi, Mehrad
  • Roudari, Soheil
  • Tiwari, Aviral Kumar
  • Roubaud, David

Abstract

Notwithstanding Australia plays the lead role in exporting strategic commodities such as crude oil, natural gas, coal, Liquid Natural Gas (LNG), and iron ore, a scattering of researchers attempts to investigate the effects of exported commodities on stock and currency in Australia. In this academic research, our objective is to delve deeply into volatility connectedness among Brent oil, natural gas, coal, iron ore, LNG, stock, and currency markets in Australia. To that end, we adopt Ando et al. (2018) and Baruník and Křehlík (2018) techniques which are built upon Diebold and Yilmaz's (2012) framework for utilizing quantile- and frequency-based spillover analysis respectively. Finally, we used a recent approach developed by Chatziantoniou et al. (2022) for robustness purposes which combines quantile-spillover (due to Ando et al., 2018) and frequency-spillover (due to Baruník and Křehlík, 2018). This approach enables us not only to overcome the methodological shortcomings of prior studies but also to provide an insightful analysis regarding interrelationships across pivotal commodities. Our findings reveal that lower and upper quantiles show more satisfactory performance compared to the conditional mean. This implies that the usage of mean-based connectedness measures does not provide accurate results. More precisely, even though it provides a practical framework for gauging extreme spillovers, it overlooks certain quantiles. The framework, accordingly, undervalues the real effects of spillovers across the markets. What is more, the mentioned principal approach deploys Ordinary Least Square (OLS) framework to gauge the VAR. As a dire consequence, this framework prevents improving the efficiency of the model. We discern Brent oil, natural gas, and Australian stock are the most consequential net transmitters of shocks in this system. Plus, the total spillover index reveals a high level of strength in the return spillovers amid the assets. In terms of policy implications, we expect our outcomes to aid market participants in expanding their perceptions concerning price volatility shocks in these crucial markets. For investors, they are able to measure related risks during extreme positive or extreme negative conditions, leading investors to stabilize their portfolios during extreme conditions and hedging, and risk-pricing, at that. From the results of BK (2018), we comprehend total connectedness does not properly perform in long-horizon. This suggests investors should not hold the markets in short-horizon by reason of high volatility.

Suggested Citation

  • Asadi, Mehrad & Roudari, Soheil & Tiwari, Aviral Kumar & Roubaud, David, 2023. "Scrutinizing commodity markets by quantile spillovers: A case study of the Australian economy," Energy Economics, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:eneeco:v:118:y:2023:i:c:s0140988322006119
    DOI: 10.1016/j.eneco.2022.106482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322006119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reboredo, Juan C., 2012. "Modelling oil price and exchange rate co-movements," Journal of Policy Modeling, Elsevier, vol. 34(3), pages 419-440.
    2. Ahmed, Abdullahi D. & Huo, Rui, 2021. "Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China," Energy Economics, Elsevier, vol. 93(C).
    3. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    4. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2021. "Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach," Economics Letters, Elsevier, vol. 204(C).
    5. Karali, Berna & Ramirez, Octavio A., 2014. "Macro determinants of volatility and volatility spillover in energy markets," Energy Economics, Elsevier, vol. 46(C), pages 413-421.
    6. Chris Heaton & George Milunovich & Anthony Passé‐De Silva, 2011. "International Commodity Prices and the Australian Stock Market," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 37-44, March.
    7. repec:dau:papers:123456789/14980 is not listed on IDEAS
    8. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    9. Tsuji, Chikashi, 2018. "New DCC analyses of return transmission, volatility spillovers, and optimal hedging among oil futures and oil equities in oil-producing countries," Applied Energy, Elsevier, vol. 229(C), pages 1202-1217.
    10. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    11. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    12. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: evidences from China’s coal market," LSE Research Online Documents on Economics 102540, London School of Economics and Political Science, LSE Library.
    13. Clemence Gomwe & Ying Li, 2020. "Iron ore price and the AUD exchange rate: A Markov approach," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 29(2), pages 147-162, February.
    14. Creti, Anna & Joëts, Marc & Mignon, Valérie, 2013. "On the links between stock and commodity markets' volatility," Energy Economics, Elsevier, vol. 37(C), pages 16-28.
    15. Fasanya, Ismail O. & Adekoya, Oluwasegun B. & Adetokunbo, Abiodun M., 2021. "On the connection between oil and global foreign exchange markets: The role of economic policy uncertainty," Resources Policy, Elsevier, vol. 72(C).
    16. Mensi, Walid & Shafiullah, Muhammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Volatility spillovers between strategic commodity futures and stock markets and portfolio implications: Evidence from developed and emerging economies," Resources Policy, Elsevier, vol. 71(C).
    17. Prasad, Nalin & Grant, Andrew & Kim, Suk-Joong, 2018. "Time varying volatility indices and their determinants: Evidence from developed and emerging stock markets," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 115-126.
    18. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Jadidzadeh, Ali & Serletis, Apostolos, 2017. "How does the U.S. natural gas market react to demand and supply shocks in the crude oil market?," Energy Economics, Elsevier, vol. 63(C), pages 66-74.
    20. Choi, Kyongwook & Hammoudeh, Shawkat, 2010. "Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment," Energy Policy, Elsevier, vol. 38(8), pages 4388-4399, August.
    21. Chen, Yu-chin & Rogoff, Kenneth, 2003. "Commodity currencies," Journal of International Economics, Elsevier, vol. 60(1), pages 133-160, May.
    22. Apergis, Nicholas & Miller, Stephen M., 2009. "Do structural oil-market shocks affect stock prices?," Energy Economics, Elsevier, vol. 31(4), pages 569-575, July.
    23. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    24. Morales-Zumaquero, Amalia & Sosvilla-Rivero, Simón, 2018. "Volatility spillovers between foreign exchange and stock markets in industrialized countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 121-136.
    25. Kim, Suk-Joong & Salem, Leith & Wu, Eliza, 2015. "The role of macroeconomic news in sovereign CDS markets: Domestic and spillover news effects from the U.S., the Eurozone and China," Journal of Financial Stability, Elsevier, vol. 18(C), pages 208-224.
    26. Ratti, Ronald A. & Hasan, M. Zahid, 2013. "Oil Price Shocks and Volatility in Australian Stock Returns ‎," MPRA Paper 49043, University Library of Munich, Germany.
    27. Demirer, Rıza & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2020. "Oil price shocks, global financial markets and their connectedness," Energy Economics, Elsevier, vol. 88(C).
    28. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    29. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Oil price shocks and the return and volatility spillover between industrial and precious metals," Energy Economics, Elsevier, vol. 99(C).
    30. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    31. Nandha, Mohan & Hammoudeh, Shawkat, 2007. "Systematic risk, and oil price and exchange rate sensitivities in Asia-Pacific stock markets," Research in International Business and Finance, Elsevier, vol. 21(2), pages 326-341, June.
    32. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    33. Batten, Jonathan A. & Brzeszczynski, Janusz & Ciner, Cetin & Lau, Marco C.K. & Lucey, Brian & Yarovaya, Larisa, 2019. "Price and volatility spillovers across the international steam coal market," Energy Economics, Elsevier, vol. 77(C), pages 119-138.
    34. Ciner, Cetin & Gurdgiev, Constantin & Lucey, Brian M., 2013. "Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 202-211.
    35. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
    36. Gatfaoui, Hayette, 2016. "Linking the gas and oil markets with the stock market: Investigating the U.S. relationship," Energy Economics, Elsevier, vol. 53(C), pages 5-16.
    37. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    38. Katja Ignatieva & Natalia Ponomareva, 2017. "Commodity currencies and commodity prices: modelling static and time-varying dependence," Applied Economics, Taylor & Francis Journals, vol. 49(15), pages 1491-1512, March.
    39. Nick, Sebastian & Thoenes, Stefan, 2014. "What drives natural gas prices? — A structural VAR approach," Energy Economics, Elsevier, vol. 45(C), pages 517-527.
    40. Sui, Lu & Sun, Lijuan, 2016. "Spillover effects between exchange rates and stock prices: Evidence from BRICS around the recent global financial crisis," Research in International Business and Finance, Elsevier, vol. 36(C), pages 459-471.
    41. Barnes, Ryan & Bosworth, Ryan, 2015. "LNG is linking regional natural gas markets: Evidence from the gravity model," Energy Economics, Elsevier, vol. 47(C), pages 11-17.
    42. Salisu, Afees A. & Adediran, Idris A., 2019. "Assessing the inflation hedging potential of coal and iron ore in Australia," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    43. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    44. Ronald A. Ratti & M. Zahid Hasan, 2013. "Oil Price Shocks and Volatility in Australian Stock Returns," The Economic Record, The Economic Society of Australia, vol. 89, pages 67-83, June.
    45. Singh, Vipul Kumar & Nishant, Shreyank & Kumar, Pawan, 2018. "Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility," Energy Economics, Elsevier, vol. 76(C), pages 48-63.
    46. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    47. Akyildirim, Erdinc & Cepni, Oguzhan & Molnár, Peter & Uddin, Gazi Salah, 2022. "Connectedness of energy markets around the world during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 109(C).
    48. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    49. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Karikari, Nana Kwasi & Hammoudeh, Shawkat, 2022. "Time-varying dependence dynamics between international commodity prices and Australian industry stock returns: a Perspective for portfolio diversification," Energy Economics, Elsevier, vol. 108(C).
    50. Ma, Yiqun & Wang, Junhao, 2019. "Co-movement between oil, gas, coal, and iron ore prices, the Australian dollar, and the Chinese RMB exchange rates: A copula approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    51. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
    52. Zhu, Hui-Ming & Li, Rong & Li, Sufang, 2014. "Modelling dynamic dependence between crude oil prices and Asia-Pacific stock market returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 208-223.
    53. Chkir, Imed & Guesmi, Khaled & Brayek, Angham Ben & Naoui, Kamel, 2020. "Modelling the nonlinear relationship between oil prices, stock markets, and exchange rates in oil-exporting and oil-importing countries," Research in International Business and Finance, Elsevier, vol. 54(C).
    54. Liu, Zhenhua & Shi, Xunpeng & Zhai, Pengxiang & Wu, Shan & Ding, Zhihua & Zhou, Yuqin, 2021. "Tail risk connectedness in the oil-stock nexus: Evidence from a novel quantile spillover approach," Resources Policy, Elsevier, vol. 74(C).
    55. Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
    56. Li, Bingxin, 2019. "Pricing dynamics of natural gas futures," Energy Economics, Elsevier, vol. 78(C), pages 91-108.
    57. Zhu, Xuehong & Zheng, Weihang & Zhang, Hongwei & Guo, Yaoqi, 2019. "Time-varying international market power for the Chinese iron ore markets," Resources Policy, Elsevier, vol. 64(C).
    58. Serletis, Apostolos & Xu, Libo, 2016. "Volatility and a century of energy markets dynamics," Energy Economics, Elsevier, vol. 55(C), pages 1-9.
    59. Panda, Ajaya Kumar & Panda, Pradiptarathi & Nanda, Swagatika & Parad, Atul, 2021. "Information bias and its spillover effect on return volatility: A study on stock markets in the Asia-Pacific region," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    60. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    61. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    62. Faff, Robert W. & Brailsford, Timothy J., 1999. "Oil price risk and the Australian stock market," Journal of Energy Finance & Development, Elsevier, vol. 4(1), pages 69-87, June.
    63. Atems, Bebonchu & Kapper, Devin & Lam, Eddery, 2015. "Do exchange rates respond asymmetrically to shocks in the crude oil market?," Energy Economics, Elsevier, vol. 49(C), pages 227-238.
    64. Liu, Yan & Shi, Xunpeng & Laurenceson, James, 2020. "Dynamics of Australia's LNG export performance: A modified constant market shares analysis," Energy Economics, Elsevier, vol. 89(C).
    65. Ghosh, Indranil & Datta Chaudhuri, Tamal & Alfaro-Cortés, Esteban & Gámez Martínez, Matías & García Rubio, Noelia, 2021. "Estimating the relative effects of raw material prices, sectoral outlook and market sentiment on stock prices," Resources Policy, Elsevier, vol. 73(C).
    66. Asadi, Mehrad & Roubaud, David & Tiwari, Aviral Kumar, 2022. "Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness," Energy Economics, Elsevier, vol. 109(C).
    67. Kirkulak-Uludag, Berna & Safarzadeh, Omid, 2021. "Exploring shock and volatility transmission between oil and Chinese industrial raw materials," Resources Policy, Elsevier, vol. 70(C).
    68. Zeng, Ting & Yang, Mengying & Shen, Yifan, 2020. "Fancy Bitcoin and conventional financial assets: Measuring market integration based on connectedness networks," Economic Modelling, Elsevier, vol. 90(C), pages 209-220.
    69. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    70. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    71. Beckmann, Joscha & Czudaj, Robert L. & Arora, Vipin, 2020. "The relationship between oil prices and exchange rates: Revisiting theory and evidence," Energy Economics, Elsevier, vol. 88(C).
    72. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market," Energy Economics, Elsevier, vol. 84(C).
    73. Mensi, Walid & Hernandez, Jose Arroeola & Yoon, Seong-Min & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Spillovers and connectedness between major precious metals and major currency markets: The role of frequency factor," International Review of Financial Analysis, Elsevier, vol. 74(C).
    74. Nam T. Hoang & Bao H. Nguyen, 2018. "Oil and Iron Ore Price Shocks: What Are the Different Economic Effects in Australia?," The Economic Record, The Economic Society of Australia, vol. 94(305), pages 186-203, June.
    75. B., Anand & Paul, Sunil, 2021. "Oil shocks and stock market: Revisiting the dynamics," Energy Economics, Elsevier, vol. 96(C).
    76. Della Bosca, Hannah & Gillespie, Josephine, 2018. "The coal story: Generational coal mining communities and strategies of energy transition in Australia," Energy Policy, Elsevier, vol. 120(C), pages 734-740.
    77. Belhassine, Olfa & Karamti, Chiraz, 2021. "Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis," Energy Economics, Elsevier, vol. 102(C).
    78. Albulescu, Claudiu Tiberiu & Demirer, Riza & Raheem, Ibrahim D. & Tiwari, Aviral Kumar, 2019. "Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies," Energy Economics, Elsevier, vol. 83(C), pages 375-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evrim Mandaci, Pınar & Azimli, Asil & Mandaci, Nazif, 2023. "The impact of geopolitical risks on connectedness among natural resource commodities: A quantile vector autoregressive approach," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    2. Asadi, Mehrad & Roubaud, David & Tiwari, Aviral Kumar, 2022. "Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness," Energy Economics, Elsevier, vol. 109(C).
    3. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).
    4. Fasanya, Ismail O. & Adekoya, Oluwasegun B. & Adetokunbo, Abiodun M., 2021. "On the connection between oil and global foreign exchange markets: The role of economic policy uncertainty," Resources Policy, Elsevier, vol. 72(C).
    5. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    6. Chatziantoniou, Ioannis & Elsayed, Ahmed H. & Gabauer, David & Gozgor, Giray, 2023. "Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies," Energy Economics, Elsevier, vol. 120(C).
    7. Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Mirza, Nawazish & Umar, Muhammad, 2022. "Safe haven properties of green, Islamic, and crypto assets and investor's proclivity towards treasury and gold," Energy Economics, Elsevier, vol. 115(C).
    8. Liuguo Shao & Hua Zhang & Senfeng Chang & Ziyang Wang, 2024. "Dynamic connectedness between China's commodity markets and China's sectoral stock markets: A multidimensional analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 903-926, January.
    9. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    10. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    11. Thobekile Qabhobho & Anokye M. Adam & Anthony Adu-Asare Idun & Emmanuel Asafo-Adjei & Ebenezer Boateng, 2023. "Exploring the Time-varying Connectedness and Contagion Effects among Exchange Rates of BRICS, Energy Commodities, and Volatilities," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 272-283, March.
    12. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    13. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    14. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    15. Wen, Danyan & Wang, Yudong, 2021. "Volatility linkages between stock and commodity markets revisited: Industry perspective and portfolio implications," Resources Policy, Elsevier, vol. 74(C).
    16. Le, Thanh Ha, 2023. "Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts," Renewable Energy, Elsevier, vol. 202(C), pages 613-625.
    17. Xiaohong Qi & Guofu Zhang & Yuqi Wang, 2022. "Distributional Predictability and Quantile Connectedness of New Energy, Steam Coal, and High-Tech in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    18. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    19. Cunado, Juncal & Chatziantoniou, Ioannis & Gabauer, David & de Gracia, Fernando Perez & Hardik, Marfatia, 2023. "Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures," Journal of Commodity Markets, Elsevier, vol. 30(C).
    20. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).

    More about this item

    Keywords

    Commodity markets; Diebold and Yilmaz connectedness; Quantile spillovers; Australia;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:118:y:2023:i:c:s0140988322006119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.