IDEAS home Printed from https://ideas.repec.org/f/c/pde674.html
   My authors  Follow this author

Michiel De Nooij

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. M. de Nooij & M.R. van den Berg, 2013. "The bidding paradox: why rational politicians still want to bid for mega sports events," Working Papers 13-09, Utrecht School of Economics.

    Mentioned in:

    1. What are the arguments for hosting sports mega-events?
      by Economic Logician in Economic Logic on 2013-10-10 19:46:00

Working papers

  1. M. de Nooij & M.R. van den Berg, 2013. "The bidding paradox: why rational politicians still want to bid for mega sports events," Working Papers 13-09, Utrecht School of Economics.

    Cited by:

    1. de Boer, Willem I.J. & Koning, Ruud H. & Mierau, Jochen O., 2017. "Ex-ante and ex-post willingness-to-pay for hosting a major cycling event," Research Report 17013-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Willem I. J. de Boer & Ruud H. Koning & Jochen O. Mierau, 2019. "Ex Ante and Ex Post Willingness to Pay for Hosting a Large International Sport Event," Journal of Sports Economics, , vol. 20(2), pages 159-176, February.

  2. Michiel de Nooij, 2010. "Social Cost Benefit Analysis of Interconnector Investment: A Critical Appraisal," Bremen Energy Working Papers 0002, Bremen Energy Research.

    Cited by:

    1. de Nooij, Michiel, 2011. "Social cost-benefit analysis of electricity interconnector investment: A critical appraisal," Energy Policy, Elsevier, vol. 39(6), pages 3096-3105, June.
    2. McInerney, Celine & Bunn, Derek, 2013. "Valuation anomalies for interconnector transmission rights," Energy Policy, Elsevier, vol. 55(C), pages 565-578.

  3. Smulders, J.A. & de Nooij, M., 2003. "The impact of energy conservation on technology and economic growth," Other publications TiSEM c4db0986-2132-4216-aa53-0, Tilburg University, School of Economics and Management.

    Cited by:

    1. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    2. Lennox, James A. & Witajewski, Jan, 2014. "Directed Technical Change With Capital-Embodied Technologies: Implications For Climate Policy," Climate Change and Sustainable Development 183143, Fondazione Eni Enrico Mattei (FEEM).
    3. Nela Vlahinic-Dizdarevic & Sasa Zikovic, 2010. "The role of energy in economic growth: the case of Croatia," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 28(1), pages 35-60.
    4. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    5. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    6. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    7. Christos Karydas & Lin Zhang, 2017. "Green tax reform, endogenous innovation and the growth dividend," CER-ETH Economics working paper series 17/266, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Hernando Zuleta, 2008. "Energy saving innovations, non-exhaustible sources of energy and long run; what would happen if we run out of oil," Documentos de Trabajo 4593, Universidad del Rosario.
    9. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    10. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    11. Brock,W.A. & Taylor,M.S., 2004. "The Green Solow model," Working papers 16, Wisconsin Madison - Social Systems.
    12. Hart, Rob, 2013. "Directed technological change and factor shares," Economics Letters, Elsevier, vol. 119(1), pages 77-80.
    13. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    14. Renaud Crassous, Jean-Charles Hourcade, Olivier Sassi, 2006. "Endogenous Structural Change and Climate Targets Modeling Experiments with Imaclim-R," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 259-276.
    15. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
    16. Claudio Baccianti & Andreas Löschel, 2014. "The Role of Product and Process Innovation in CGE Models of Environmental Policy. WWWforEurope Working Paper No. 68," WIFO Studies, WIFO, number 47501, April.
    17. Gerhard Glomm & Juergen Jung, 2012. "A Macroeconomic Analysis of Energy Subsidies in a Small Open Economy: The Case of Egypt," CAEPR Working Papers 2012-006, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    18. Thongphet Lamphayphan & Toshihisa Toyoda & Chris Czerkawsk & Phouphet Kyophilavong, 2015. "Export Supply of Electricity from Laos to Thailand: An Econometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 450-460.
    19. Jakub Growiec, 2015. "Isoelastic elasticity of substitution production functions," NBP Working Papers 201, Narodowy Bank Polski.
    20. Philippe Aghion & Antoine Dechezleprêtre & David Hemous & Ralf Martin & John Van Reenen, 2012. "Carbon Taxes, Path Dependency and Directed Technical Change: Evidence from the Auto Industry," NBER Working Papers 18596, National Bureau of Economic Research, Inc.
    21. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    22. Christos Karydas & Evangelos V. Dioikitopoulos, 2020. "Sustainability traps: patience and innovation," CER-ETH Economics working paper series 20/330, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    23. Borissov, Kirill & Brausmann, Alexandra & Bretschger, Lucas, 2019. "Carbon pricing, technology transition, and skill-based development," European Economic Review, Elsevier, vol. 118(C), pages 252-269.
    24. Garth Heutel & Carolyn Fischer, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," NBER Working Papers 18794, National Bureau of Economic Research, Inc.
    25. Saten Kumar & Don J. Webber & Antonio Paradiso, 2012. "Does energy consumption affect growth?," Working Papers 2012-04, Auckland University of Technology, Department of Economics.
    26. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    27. Zhiyu Fang & Ling Jiang & Zhong Fang, 2021. "Does Economic Policy Intervention Inhibit the Efficiency of China’s Green Energy Economy?," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
    28. Kaya, Abidin & Yalcintas, Melek, 2010. "Energy consumption trends in Hawaii," Energy, Elsevier, vol. 35(3), pages 1363-1367.
    29. Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
    30. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    31. Alho, Kari, 2006. "Climate Policies and Economic Growth," Discussion Papers 1024, The Research Institute of the Finnish Economy.
    32. Wei Jin & ZhongXiang Zhang, 2015. "On the Mechanism of International Technology Diffusion for Energy Technological Progress," Working Papers 2015.24, Fondazione Eni Enrico Mattei.
    33. Zon, Adriaan van & Kronenberg, Tobias, 2005. "General Purpose Technologies and Energy Policy," Research Memorandum 011, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    34. Rob Hart, 2009. "Bad Eggs, Learning-by-doing, and the Choice of Technology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(4), pages 429-450, April.
    35. Abdel Sabour, Sabry. A., 2005. "Quantifying the external cost of oil consumption within the context of sustainable development," Energy Policy, Elsevier, vol. 33(6), pages 809-813, April.
    36. Grimaud, André & Rougé, Luc, 2007. "Environment, Directed Technical Change and Economic Policy," IDEI Working Papers 384, Institut d'Économie Industrielle (IDEI), Toulouse.
    37. Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
    38. Jean-Pierre Amigues & Michel Moreaux & Francesco Ricci, 2006. "Overcoming the natural resource constraint through dedicated R&D effort with heterogenous labor supply," THEMA Working Papers 2006-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    39. Karen Pittel & Lucas Bretschger, 2008. "Sectoral Heterogeneity, Resource Depletion, and Directed Technical Change: Theory and Policy," CER-ETH Economics working paper series 08/96, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    40. Fatih Karanfil & Thomas Jobert, 2007. "Sectoral Energy Consumption by Source and Economic Growth: The Case of Turkey," Energy and Environmental Modeling 2007 24000019, EcoMod.
    41. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    42. Adrien Fabre & Mouez Fodha & Francesco Ricci, 2019. "Mineral Resources for Renewable Energy: Optimal Timing of Energy Production," Working Papers 2019.06, FAERE - French Association of Environmental and Resource Economists.
    43. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    44. Francesco Ricci, 2007. "Environmental Policy and Growth when Inputs are Differentiated in Pollution Intensity," Post-Print hal-02024122, HAL.
    45. Agustin, PEREZ-BARAHONA, 2007. "The problem of non-renewable energy resources in the production of physical capital," Discussion Papers (ECON - Département des Sciences Economiques) 2007007, Université catholique de Louvain, Département des Sciences Economiques.
    46. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    47. Peter Mulder & Henri L.F. de Groot, 2004. "Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors," Tinbergen Institute Discussion Papers 04-005/3, Tinbergen Institute.
    48. Aude Pommeret & Francesco Ricci & Katheline Schubert, 2022. "Critical raw materials for the energy transition," Post-Print hal-03467525, HAL.
    49. Gerhard Glomm & Juergen Jung, 2013. "A Macroeconomic Analysis of Energy Subsidies in a Small Open Economy," Working Papers 2013-02, Towson University, Department of Economics, revised Oct 2014.
    50. Tom-Reiel Heggedal, 2008. "On R&D and the undersupply of emerging versus mature technologies," Discussion Papers 571, Statistics Norway, Research Department.
    51. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    52. Chandran, V.G.R. & Sharma, Susan & Madhavan, Karunagaran, 2010. "Electricity consumption-growth nexus: The case of Malaysia," Energy Policy, Elsevier, vol. 38(1), pages 606-612, January.
    53. PEREZ-BARAHONA, Agustin & ZOU, Benteng, 2006. "A comparative study of energy saving technical progress in a vintage capital model," LIDAM Reprints CORE 1841, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    54. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous Structural Change and Climate Targets : Modeling experiments with Imaclim-R," Working Papers hal-00866411, HAL.
    55. Jin, Jang C. & Choi, Jai-Young & Yu, Eden S.H., 2009. "Energy prices, energy conservation, and economic growth: Evidence from the postwar United States," International Review of Economics & Finance, Elsevier, vol. 18(4), pages 691-699, October.
    56. Gregory P. Casey, 2022. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," CESifo Working Paper Series 9580, CESifo.
    57. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    58. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
    59. Hassler, John & Krusell, Per & Olovsson, Conny, 2022. "Finite resources and the world economy," Journal of International Economics, Elsevier, vol. 136(C).
    60. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    61. Kümmel, Reiner & Lindenberger, Dietmar & Weiser, Florian, 2015. "The economic power of energy and the need to integrate it with energy policy," Energy Policy, Elsevier, vol. 86(C), pages 833-843.
    62. Aqib, Muhammad & Zaman, Khalid, 2023. "Greening the Workforce: The Power of Investing in Human Capital," MPRA Paper 116263, University Library of Munich, Germany, revised 05 Feb 2023.
    63. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    64. Zsuzsanna Csereklyei & Maria del Mar Rubio Varas & David I. Stern, 2014. "Energy and Economic Growth: The Stylized Facts," CCEP Working Papers 1417, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    65. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    66. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    67. Richard Green & Nicholas Vasilakos, 2011. "Storing Wind for a Rainy Day What kind of electricity does Denmark export?," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2011-11, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    68. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    69. Joan Canton & Ariane Labat & Anton Roodhuijzen, 2010. "An indicator-based assessment framework to identify country-specific challenges towards greener grow," European Economy - Economic Papers 2008 - 2015 401, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    70. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
    71. Horii, Ryo & Ikefuji, Masako, 2014. "Environment and Growth," MPRA Paper 53624, University Library of Munich, Germany.
    72. Tiwari, Aviral, 2010. "On the dynamics of energy consumption and employment in public and private sector," MPRA Paper 24076, University Library of Munich, Germany.
    73. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    74. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    75. Gerard van der Meijden & Sjak Smulders, 2014. "Carbon Lock-In: The Role of Expectations," Tinbergen Institute Discussion Papers 14-100/VIII, Tinbergen Institute, revised 14 Jul 2016.
    76. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    77. Lucas Bretschger, 2019. "Malthus in the Light of Climate Change," CER-ETH Economics working paper series 19/320, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    78. Alina Zaharia & Aurelia-Gabriela Antonescu, 2013. "Comparative Analysis of Energy Sectors in Some Countries of Eastern Europe," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(6), pages 1-13, December.
    79. Kirschbaum, Birgit & Soretz, Susanne, 2017. "Human capital, pollution control, and endogenous growth," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168186, Verein für Socialpolitik / German Economic Association.
    80. Saba Anwar & Hafsa Hina & Fahad Sultan & Muhammad Ibrahim Khan & Muzaffar Abbas & Perfecto G. Aquino, 2020. "Investments in Energy Conservation: Policy Implications for Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 662-671.
    81. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous structural change and climate targets," Post-Print halshs-00009335, HAL.
    82. Ibitoye J. Oyebanji & Hlalefang Khobai & Pierre Le Roux, 2019. "Green Growth Policies and Sustainable Economic Growth in South Africa: An Autoregressive Distributed Lag and Toda-Yamamoto Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 184-193.
    83. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    84. Spiro, Daniel, 2014. "Resource prices and planning horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 159-175.
    85. Francisco J. André & Sjak Smulders, 2012. "Fueling Growth when Oil Peaks: Directed Technological Change and the Limits to Efficiency," CESifo Working Paper Series 3977, CESifo.
    86. Ibitoye J. Oyebanji & Dayo B. Olanipekun & Ewert P. J. Kleynhans, 2022. "The Potential of Information and Communication Technologies to Generate International Trade in Africa," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 20(3 (Fall)), pages 237-257.
    87. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
    88. Burghaus, Kerstin & Funk, Peter, 2013. "Endogenous Growth, Green Innovation and GDP Deceleration in a World with Polluting Production Inputs," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80022, Verein für Socialpolitik / German Economic Association.
    89. Halkos, George & Tzeremes, Nickolaos, 2011. "The effect of energy consumption on countries’ economic efficiency: a conditional robust non parametric approach," MPRA Paper 28692, University Library of Munich, Germany.
    90. Fanny Henriet, Nicolas Maggiar, and Katheline Schubert, 2014. "A Stylized Applied Energy-Economy Model for France," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    91. Christos Karydas, 2017. "The inter-temporal dimension to knowledge spillovers: any non-environmental reason to support clean innovation?," CER-ETH Economics working paper series 17/267, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    92. David I. Stern & Astrid Kander, 2011. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," CAMA Working Papers 2011-01, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    93. Stanley Kam Sing Wong, 2013. "Environmental Requirements, Knowledge Sharing and Green Innovation: Empirical Evidence from the Electronics Industry in China," Business Strategy and the Environment, Wiley Blackwell, vol. 22(5), pages 321-338, July.
    94. Wirl, Franz, 2008. "Energy conservation, expectations and uncertainty," Energy Economics, Elsevier, vol. 30(4), pages 1957-1972, July.
    95. Agustin, PEREZ BARAHONA, 2007. "Capital Accumulation and Non-Renewable Energy Resources : a Special Functions Case," Discussion Papers (ECON - Département des Sciences Economiques) 2007008, Université catholique de Louvain, Département des Sciences Economiques.
    96. Wajahat Ali & Azrai Abdullah & Muhammad Azam, 2016. "The Dynamic Linkage between Technological Innovation and carbon dioxide emissions in Malaysia: An Autoregressive Distributed Lagged Bound Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 389-400.
    97. Jakub Growiec, 2017. "Factor-Specific Technology Choice," EcoMod2017 10240, EcoMod.
    98. Yang, Bo & Liu, Baozhen & Peng, Jiachao & Liu, Xujun, 2022. "The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing," Technology in Society, Elsevier, vol. 71(C).
    99. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    100. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    101. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    102. Zhang, Ning & Wu, Tao & Wang, Bing & Dong, Liang & Ren, Jingzhen, 2015. "Sustainable water resource and endogenous economic growth," MPRA Paper 73457, University Library of Munich, Germany.
    103. Bezin, Emeline, 2019. "The economics of green consumption, cultural transmission and sustainable technological change," Journal of Economic Theory, Elsevier, vol. 181(C), pages 497-546.
    104. Jeroen Klijs & Jack Peerlings & Wim Heijman, 2017. "Introducing labour productivity changes into models used for economic impact analysis in tourism," Tourism Economics, , vol. 23(3), pages 561-576, May.
    105. AMIGUES Jean-Pierre & MOREAUX Michel & RICCI Francesco, 2007. "Complement Materiel to "Resource augmenting R&D with heterogenous labor supply"," LERNA Working Papers 07.15.236, LERNA, University of Toulouse.
    106. Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," RFF Working Paper Series dp-07-14, Resources for the Future.
    107. Zhou, Sophie, 2020. "Innovation and the macroeconomy," Other publications TiSEM 2225a10d-0121-4ff7-91fe-2, Tilburg University, School of Economics and Management.
    108. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," 2019 Meeting Papers 1458, Society for Economic Dynamics.
    109. Yanying Chen & Chunying Li, 2011. "Entropy, Substitution and Sustainable Economic Growth," Research in World Economy, Research in World Economy, Sciedu Press, vol. 2(2), pages 66-70, October.
    110. Lim, Jong-Soo & Kim, Yong-Gun, 2012. "Combining carbon tax and R&D subsidy for climate change mitigation," Energy Economics, Elsevier, vol. 34(S3), pages 496-502.
    111. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    112. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    113. Antoine Dechezlepretre, Ralf Martin, Myra Mohnen, 2017. "Knowledge Spillovers from clean and dirty technologies," GRI Working Papers 135, Grantham Research Institute on Climate Change and the Environment.
    114. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    115. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    116. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    117. Marina Recalde & Jesus Ramos-Martin, 2011. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," UHE Working papers 2011_03, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    118. Jean-Pierre Amigues & Ngo Van Long & Michel Moreaux, 2004. "Overcoming Natural Resource Constraints Through R&D," CIRANO Working Papers 2004s-14, CIRANO.
    119. Ioana Anda Milin & Mariana Claudia Mungiu Pupazan & Abdul Rehman & Irina Elena Chirtoc & Nicolae Ecobici, 2022. "Examining the Relationship between Rural and Urban Populations’ Access to Electricity and Economic Growth: A New Evidence," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    120. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    121. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    122. Mónica Meireles & Isabel Soares & Óscar Afonso, 2010. "Economic Growth, Ecological Technology and Public Intervention," FEP Working Papers 378, Universidade do Porto, Faculdade de Economia do Porto.
    123. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2009. "Human capital formation and global warming mitigation: evidence from an integrated assessment model," Working Papers 2009_30, Department of Economics, University of Venice "Ca' Foscari".
    124. Peter Mulder & Henri L.F. de Groot, 2004. "International Comparisons of Sectoral Energy- and Labour-Productivity Performance: Stylised Facts and Decomposition of Trends," Tinbergen Institute Discussion Papers 04-007/3, Tinbergen Institute.
    125. YAMAGAMI, Hiroaki, 2013. "Environmental tax reform and induced technological change," MPRA Paper 46516, University Library of Munich, Germany.
    126. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Energy-efficiency strategy for CO2 emissions in a residential sector in Japan," Applied Energy, Elsevier, vol. 85(2-3), pages 101-114, February.
    127. Georg Licht & Bettina Peters & Christian Köhler & Franz Schwiebacher, 2014. "The Potential Contribution of Innovation Systems to Socio-Ecological Transition. WWWforEurope Deliverable No. 4," WIFO Studies, WIFO, number 47502, April.
    128. Wu, Tao & Zhang, Ning & Gui, Lin & Wu, Wenjie, 2018. "Sustainable endogenous growth model of multiple regions: Reconciling OR and economic perspectives," European Journal of Operational Research, Elsevier, vol. 269(1), pages 218-226.
    129. Kounetas, Kostas & Tsekouras, Kostas, 2010. "Are the Energy Efficiency Technologies efficient?," Economic Modelling, Elsevier, vol. 27(1), pages 274-283, January.
    130. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
    131. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    132. Andreas Schaefer, 2016. "Survival to Adulthood and the Growth Drag of Pollution," CER-ETH Economics working paper series 16/241, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    133. Lilis Yuaningsih & R. Adjeng Mariana Febrianti, 2021. "The Nexus between Technological Advancement and CO2 Emissions in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 160-169.
    134. Lucas Bretschger & Roger Ramer, 2012. "Sectoral Growth Effects of Energy Policies in an Increasing-Varieties Model of the Swiss Economy," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 137-166, June.
    135. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture," Applied Energy, Elsevier, vol. 85(4), pages 204-217, April.
    136. Tobias Kronenberg, 2010. "Energy conservation, unemployment and the direction of technical change," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(1), pages 1-17, April.
    137. Francesco Ricci, 2007. "Resource Conservation and Directed R&D as Strategic Complements," Energy and Environmental Modeling 2007 24000052, EcoMod.
    138. Christian Groth, 2006. "A New-Growth Perspective on Non-Renewable Resources," Discussion Papers 06-26, University of Copenhagen. Department of Economics.
    139. Peretto, Pietro F., 2009. "Energy taxes and endogenous technological change," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 269-283, May.
    140. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
    141. Tong, Chao & Ding, Shuai & Wang, Bin & Yang, Shanlin, 2020. "Assessing the target-availability of China’s investments for green growth using time series prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    142. Zeeshan Khan & Muhsin Ali & Dervis Kirikkaleli & Salman Wahab & Zhilun Jiao, 2020. "The impact of technological innovation and public‐private partnership investment on sustainable environment in China: Consumption‐based carbon emissions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1317-1330, September.
    143. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    144. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    145. Herman R.J. Vollebergh, 2006. "Differential Impact of Environmental Policy Instruments on Technological Change: A Review of the Empirical Literature," Tinbergen Institute Discussion Papers 07-042/3, Tinbergen Institute.
    146. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    147. Avik Sinha, 2015. "Modeling Energy Efficiency and Economic Growth: Evidences from India," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 96-104.
    148. Jianming Xi & Hanran Wu & Bo Li & Jingyu Liu, 2020. "A Quantitative Analysis of the Optimal Energy Policy from the Perspective of China’s Supply-Side Reform," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    149. Joelle Noailly & Roger Smeets, 2014. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Application using Firm Level Patent Data," CIES Research Paper series 24-2014, Centre for International Environmental Studies, The Graduate Institute.
    150. Lei Ji, 2013. "Rethinking directed technical change with endogenous market structure," Documents de Travail de l'OFCE 2013-18, Observatoire Francais des Conjonctures Economiques (OFCE).
    151. Mare Sarr & Tim Swanson, 2017. "Will Technological Change Save the World? The Rebound Effect in International Transfers of Technology," Working Papers 669, Economic Research Southern Africa.
    152. Lei JI, 2012. "Rethinking Directed Technical Change with Endogenous Market Structure," DEGIT Conference Papers c017_037, DEGIT, Dynamics, Economic Growth, and International Trade.
    153. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    154. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    155. Mushafiq, Muhammad, 2023. "Towards green development: Role of researchers," Innovation and Green Development, Elsevier, vol. 2(4).
    156. Théophile, AZOMAHOU & Raouf, BOUCEKKINE & Phu, NUYEN VAN, 2003. "Energy consumption, technological progress and economic policy," LIDAM Discussion Papers IRES 2003025, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    157. Ahmet Koseoglu & Ali Gokhan Yucel & Recep Ulucak, 2022. "Green innovation and ecological footprint relationship for a sustainable development: Evidence from top 20 green innovator countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 976-988, October.
    158. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    159. Jobert, Thomas & Karanfil, Fatih, 2007. "Sectoral energy consumption by source and economic growth in Turkey," Energy Policy, Elsevier, vol. 35(11), pages 5447-5456, November.
    160. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    161. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    162. Maciej Malaczewski, 2017. "Warunki przejścia gospodarki na odnawialne źródła energii," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 33-51.
    163. Theodoros Zachariadis, 2006. "On the exploration of casual relationship between energy and economy," University of Cyprus Working Papers in Economics 5-2006, University of Cyprus Department of Economics.
    164. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    165. Baccianti, Claudio & Schenker, Oliver, 2015. "Report on the dynamic efficiency of trade-related climate policy instruments," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 148927.
    166. Maciej Malaczewski, 2019. "Household Ecological Preferences and Renewable Energy Spending," Prague Economic Papers, Prague University of Economics and Business, vol. 2019(4), pages 465-478.
    167. You, Jing, 2011. "China's energy consumption and sustainable development: Comparative evidence from GDP and genuine savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2984-2989, August.
    168. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    169. Kander, Astrid & Schon, Lennart, 2007. "The energy-capital relation--Sweden 1870-2000," Structural Change and Economic Dynamics, Elsevier, vol. 18(3), pages 291-305, September.
    170. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.
    171. Zachariadis, Theodoros, 2007. "Exploring the relationship between energy use and economic growth with bivariate models: New evidence from G-7 countries," Energy Economics, Elsevier, vol. 29(6), pages 1233-1253, November.
    172. Jintao Zhan & Yubei Ma & Wuyang Hu & Chao Chen & Qinan Lu, 2022. "Enhancing rural income through public agricultural R&D: Spatial spillover and infrastructure thresholds," Review of Development Economics, Wiley Blackwell, vol. 26(2), pages 1083-1107, May.
    173. Ugur Korkut Pata & Sukran Kahveci, 2018. "A multivariate causality analysis between electricity consumption and economic growth in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2857-2870, December.
    174. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
    175. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
    176. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.

Articles

  1. Thomas Könecke & Michiel de Nooij, 2022. "Politicians’ Personal Legacies from Olympic Bids and Referenda—An Analysis of Individual Risks and Opportunities," JRFM, MDPI, vol. 15(12), pages 1-20, December.

    Cited by:

    1. Ine Hugaerts & Holger Schunk & Thomas Könecke, 2023. "Environmental Sustainability as Factor for Mega Sport Event Support—Empirical Evidence Regarding the Olympic Games and the Football World Cup," World, MDPI, vol. 4(3), pages 1-13, July.

  2. Michiel de Nooij, 2014. "Mega Sport Events," Journal of Sports Economics, , vol. 15(4), pages 410-419, August.

    Cited by:

    1. Jérôme Massiani, 2020. "Towards Improved Guidelines for Cost–Benefit Analysis of Sport and Cultural Events," Economic Papers, The Economic Society of Australia, vol. 39(3), pages 270-289, September.

  3. Michiel de Nooij & Marcel van den Berg & Carl Koopmans, 2013. "Bread or Games?," Journal of Sports Economics, , vol. 14(5), pages 521-545, October.

    Cited by:

    1. Wahl, Fabian & Pfeifer, Gregor & Marczak, Martyna, 2016. "Illuminating the World Cup Effect: Night Lights Evidence from South Africa," VfS Annual Conference 2016 (Augsburg): Demographic Change 145938, Verein für Socialpolitik / German Economic Association.
    2. Matt Andrews & Peter Harrington, 2016. "Off Pitch: Football’s Financial Integrity Weaknesses, and How to Strengthen them," CID Working Papers 311, Center for International Development at Harvard University.
    3. Johan Fourie & Maria Santana-Gallego, 2017. "The Invisible Hand of Thierry Henry," Journal of Sports Economics, , vol. 18(7), pages 750-766, October.
    4. M. de Nooij & M.R. van den Berg, 2013. "The bidding paradox: why rational politicians still want to bid for mega sports events," Working Papers 13-09, Utrecht School of Economics.
    5. Jérôme Massiani, 2020. "Towards Improved Guidelines for Cost–Benefit Analysis of Sport and Cultural Events," Economic Papers, The Economic Society of Australia, vol. 39(3), pages 270-289, September.
    6. Andrews, Matt & Harrington, Peter, 2016. "Off Pitch: Football's Financial Integrity Weaknesses, and How to Strengthen Them," Working Paper Series 16-009, Harvard University, John F. Kennedy School of Government.
    7. M.R. van den Berg & M. de Nooij, 2013. "The bidding paradox: why economists, consultants and politicians disagree on the economic effects of mega sports events but might agree on their attractiveness," Working Papers 13-08, Utrecht School of Economics.
    8. Douglas Barrios & Stuart Russell & Matt Andrews, 2016. "Bringing Home the Gold? A Review of the Economic Impact of Hosting Mega-Events," CID Working Papers 320, Center for International Development at Harvard University.
    9. Michiel de Nooij, 2014. "Mega Sport Events," Journal of Sports Economics, , vol. 15(4), pages 410-419, August.
    10. Heather Mitchell & Mark Fergusson Stewart, 2015. "What should you pay to host a party? An economic analysis of hosting sports mega-events," Applied Economics, Taylor & Francis Journals, vol. 47(15), pages 1550-1561, March.

  4. de Nooij, Michiel, 2011. "Social cost-benefit analysis of electricity interconnector investment: A critical appraisal," Energy Policy, Elsevier, vol. 39(6), pages 3096-3105, June.

    Cited by:

    1. Ochoa, Camila & Gore, Olga, 2015. "The Finnish power market: Are imports from Russia low-cost?," Energy Policy, Elsevier, vol. 80(C), pages 122-132.
    2. Larsen, Peter H., 2016. "A method to estimate the costs and benefits of undergrounding electricity transmission and distribution lines," Energy Economics, Elsevier, vol. 60(C), pages 47-61.
    3. Selei, Adrienn & Takácsné Tóth, Borbála, 2022. "A modelling-based assessment of EU supported natural gas projects of common interest," Energy Policy, Elsevier, vol. 166(C).
    4. Javier Bustos-Salvagno & Fernando Fuentes H., 2017. "Electricity Interconnection in Chile: Prices versus Costs," Energies, MDPI, vol. 10(9), pages 1-17, September.
    5. Luis M. Abadie & José M. Chamorro, 2011. "Valuing Expansions of the Electricity Transmission Network under Uncertainty: The Binodal Case," Energies, MDPI, vol. 4(10), pages 1-32, October.
    6. Jonas Egerer & Friedrich Kunz & Christian von Hirschhausen, 2012. "Development Scenarios for the North and Baltic Sea Grid: A Welfare Economic Analysis," Discussion Papers of DIW Berlin 1261, DIW Berlin, German Institute for Economic Research.
    7. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Estimating the benefits of transmission expansion projects: An Aumann-Shapley approach," Energy, Elsevier, vol. 118(C), pages 1044-1054.
    8. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    9. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    10. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    11. Nepal, Rabindra & Jamasb, Tooraj, 2015. "Caught between theory and practice: Government, market, and regulatory failure in electricity sector reforms," Economic Analysis and Policy, Elsevier, vol. 46(C), pages 16-24.
    12. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    13. Mezősi, András & Kácsor, Enikő & Diallo, Alfa, 2023. "Projects of common interest? Evaluation of European electricity interconnectors," Utilities Policy, Elsevier, vol. 84(C).
    14. Newbery, David & Gissey, Giorgio Castagneto & Guo, Bowei & Dodds, Paul E., 2019. "The private and social value of British electrical interconnectors," Energy Policy, Elsevier, vol. 133(C).
    15. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Interconnections and market integration in the Irish Single Electricity Market," Energy Policy, Elsevier, vol. 51(C), pages 425-434.
    16. Schittekatte, Tim & Pototschnig, Alberto & Meeus, Leonardo & Jamasb, Tooraj & Llorca, Manuel, 2021. "Making the TEN-E regulation compatible with the Green Deal: Eligibility, selection, and cost allocation for PCIs," Energy Policy, Elsevier, vol. 156(C).
    17. Jurgita Baranauskiene & Vilija Alekneviciene, 2019. "Comprehensive Measurement of Social Benefits Generated by Public Investment Projects," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 15(4), pages 195-210.
    18. Augustine O. Ifelebuegu & Kenneth E. Aidelojie & Elijah Acquah-Andoh, 2017. "Brexit and Article 50 of the Treaty of the European Union: Implications for UK Energy Policy and Security," Energies, MDPI, vol. 10(12), pages 1-15, December.
    19. Nepal, Rabindra & Jamasb, Tooraj, 2013. "Caught Between Theory and Practice: Government, Market and Regulatory Failures in Electricity," Cambridge Working Papers in Economics 1308, Faculty of Economics, University of Cambridge.
    20. Julija Vasiljevska & Tilemahos Efthimiadis, 2022. "Selection of Smart Grids Projects of Common Interest—Past Experiences and Future Perspectives," Energies, MDPI, vol. 15(5), pages 1-14, March.
    21. Purvins, Arturs & Gerbelova, Hana & Sereno, Luigi & Minnebo, Philip, 2021. "Social welfare impact from enhanced Trans-Asian electricity trade," Energy, Elsevier, vol. 215(PA).
    22. Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
    23. Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.
    24. Fischhendler, Itay & Herman, Lior & Anderman, Jaya, 2016. "The geopolitics of cross-border electricity grids: The Israeli-Arab case," Energy Policy, Elsevier, vol. 98(C), pages 533-543.
    25. Eskandari Torbaghan, Mehran & Burrow, Michael P.N. & Hunt, Dexter V.L. & Elcheikh, Marwa, 2017. "Risk-Based Framework (RBF) for a UK Pan-European Supergrid," Energy, Elsevier, vol. 124(C), pages 124-132.
    26. Lidia Puka & Kacper Szulecki, 2014. "Beyond the "Grid-Lock" in Electricity Interconnectors: The Case of Germany and Poland," Discussion Papers of DIW Berlin 1378, DIW Berlin, German Institute for Economic Research.
    27. Dutton, Joseph & Lockwood, Matthew, 2017. "Ideas, institutions and interests in the politics of cross-border electricity interconnection: Greenlink, Britain and Ireland," Energy Policy, Elsevier, vol. 105(C), pages 375-385.

  5. Leenheer, Jorna & de Nooij, Michiel & Sheikh, Omer, 2011. "Own power: Motives of having electricity without the energy company," Energy Policy, Elsevier, vol. 39(9), pages 5621-5629, September.

    Cited by:

    1. José Ángel Gimeno & Eva Llera & Sabina Scarpellini, 2018. "Investment Determinants in Self-Consumption Facilities: Characterization and Qualitative Analysis in Spain," Energies, MDPI, vol. 11(8), pages 1-24, August.
    2. Wittenberg, Inga & Matthies, Ellen, 2018. "How do PV households use their PV system and how is this related to their energy use?," Renewable Energy, Elsevier, vol. 122(C), pages 291-300.
    3. Markus Flaute & Anett Gro mann & Christian Lutz & Anne Nieters, 2017. "Macroeconomic Effects of Prosumer Households in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 146-155.
    4. Maxim Alexandru, 2013. "Methodological Considerations Regarding The Segmentation Of Household Energy Consumers," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 1775-1785, July.
    5. Endrejat, Paul C. & Güntner, Amelie V. & Ehrenholz, Sina & Kauffeld, Simone, 2020. "Tailored communication increases the perceived benefits of solar energy," Energy Policy, Elsevier, vol. 144(C).
    6. Iliopoulos, Nikolaos & Esteban, Miguel & Kudo, Shogo, 2020. "Assessing the willingness of residential electricity consumers to adopt demand side management and distributed energy resources: A case study on the Japanese market," Energy Policy, Elsevier, vol. 137(C).
    7. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    8. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    9. Kirsi Kotilainen & Ulla A. Saari, 2018. "Policy Influence on Consumers’ Evolution into Prosumers—Empirical Findings from an Exploratory Survey in Europe," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    10. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    11. Sabina Scarpellini & José Ángel Gimeno & Pilar Portillo-Tarragona & Eva Llera-Sastresa, 2021. "Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    12. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    13. Christian A. Oberst & Reinhard Madlener, 2015. "Prosumer Preferences Regarding the Adoption of Micro†Generation Technologies: Empirical Evidence for German Homeowners," Working Papers 2015.07, International Network for Economic Research - INFER.
    14. Oberst, Christian & Madlener, Reinhard, 2015. "Prosumer Preferences Regarding the Adoption of Micro‐Generation Technologies: Empirical Evidence for German Homeowners," FCN Working Papers 22/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    15. Marko, Wolfgang A., 2014. "Small-scale, Big Impact – Utilities’ New Business Models for “Energiewende”," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 201-220.
    16. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    17. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    18. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    19. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    20. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    21. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    22. Victor Fernández-Guzmán & Edgardo R. Bravo, 2018. "Understanding Continuance Usage of Natural Gas: A Theoretical Model and Empirical Evaluation," Energies, MDPI, vol. 11(8), pages 1-17, August.
    23. Baskaran, Ramesh & Managi, Shunsuke & Bendig, Mirko, 2013. "A public perspective on the adoption of microgeneration technologies in New Zealand: A multivariate probit approach," Energy Policy, Elsevier, vol. 58(C), pages 177-188.
    24. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    25. Vögele, Stefan & Poganietz, Witold-Roger & Kleinebrahm, Max & Weimer-Jehle, Wolfgang & Bernhard, Jesse & Kuckshinrichs, Wilhelm & Weiss, Annika, 2022. "Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives," Energy, Elsevier, vol. 248(C).
    26. Ecker, Franz & Spada, Hans & Hahnel, Ulf J.J., 2018. "Independence without control: Autarky outperforms autonomy benefits in the adoption of private energy storage systems," Energy Policy, Elsevier, vol. 122(C), pages 214-228.
    27. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    28. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    29. Hansen, Anders Rhiger & Jacobsen, Mette Hove & Gram-Hanssen, Kirsten, 2022. "Characterizing the Danish energy prosumer: Who buys solar PV systems and why do they buy them?," Ecological Economics, Elsevier, vol. 193(C).
    30. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    31. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell, 2018. "Why homeowners strive for energy self-supply and how policy makers can influence them," Energy Policy, Elsevier, vol. 117(C), pages 423-433.

  6. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.

    Cited by:

    1. Bouwmeester, Maaike & Scholtens, Bert, 2014. "Cross-border spillovers from European gas infrastructure investment," Research Report 14028-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Röpke, Luise, 2013. "The development of renewable energies and supply security: A trade-off analysis," Energy Policy, Elsevier, vol. 61(C), pages 1011-1021.
    3. Klaus S. Friesenbichler, 2013. "Innovation in the Energy Sector. WWWforEurope Working Paper No. 31," WIFO Studies, WIFO, number 46917, April.
    4. Woo, C.K. & Ho, T. & Shiu, A. & Cheng, Y.S. & Horowitz, I. & Wang, J., 2014. "Residential outage cost estimation: Hong Kong," Energy Policy, Elsevier, vol. 72(C), pages 204-210.
    5. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58.
    6. Bouwmeester, Maaike C. & Scholtens, Bert, 2017. "Cross-border investment expenditure spillovers in European gas infrastructure," Energy Policy, Elsevier, vol. 107(C), pages 371-380.

  7. de Nooij, Michiel & Lieshout, Rogier & Koopmans, Carl, 2009. "Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing," Energy Economics, Elsevier, vol. 31(3), pages 342-347, May.

    Cited by:

    1. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
    2. Lachman, Daniël A., 2011. "Leapfrog to the future: Energy scenarios and strategies for Suriname to 2050," Energy Policy, Elsevier, vol. 39(9), pages 5035-5044, September.
    3. Marcos Perroni & Luciano Luiz Dalazen & Wesley Vieira da Silva & Sergio Eduardo Gouv a da Costa & Claudimar Pereira da Veiga, 2015. "Evolution of Risks for Energy Companies from the Energy Efficiency Perspective: The Brazilian Case," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 612-623.
    4. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    5. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    6. Zachariadis, Theodoros & Poullikkas, Andreas, 2012. "The costs of power outages: A case study from Cyprus," Energy Policy, Elsevier, vol. 51(C), pages 630-641.
    7. Zhang, Lijun & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems," Applied Energy, Elsevier, vol. 119(C), pages 306-313.
    8. Lamessa Tariku ABDISA, 2018. "Power Outages, its Economic Cost and Firm Performance: Evidence from Ethiopia," Departmental Working Papers 2018-01, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    9. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
    10. Kerianne Lawson, 2022. "Electricity outages and residential fires: Evidence from Cape Town, South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 90(4), pages 469-485, December.
    11. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2021. "Are electricity system outages and the generation mix related? Evidence from NSW, Australia," Energy Economics, Elsevier, vol. 99(C).
    12. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    13. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    14. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
    16. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    17. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.
    18. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
    19. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    20. Piaszeck, Simon & Wenzel, Lars & Wolf, André, 2013. "Regional diversity in the costs of electricity outages: Results for German counties," HWWI Research Papers 142, Hamburg Institute of International Economics (HWWI).
    21. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
    22. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    23. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    24. Morrissey, Karyn & Plater, Andrew & Dean, Mary, 2018. "The cost of electric power outages in the residential sector: A willingness to pay approach," Applied Energy, Elsevier, vol. 212(C), pages 141-150.
    25. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
    26. Hunt., Julian David & Stilpen, Daniel & de Freitas, Marcos Aurélio Vasconcelos, 2018. "A review of the causes, impacts and solutions for electricity supply crises in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 208-222.

  8. de Nooij, Michiel & Baarsma, Barbara, 2009. "Divorce comes at a price: An ex ante welfare analysis of ownership unbundling of the distribution and commercial companies in the Dutch energy sector," Energy Policy, Elsevier, vol. 37(12), pages 5449-5458, December.

    Cited by:

    1. Roland Meyer, 2011. "Vertical Economies and the Costs of Separating Electricity Supply-A Review of Theoretical and Empirical Literature," Bremen Energy Working Papers 0006, Bremen Energy Research.
    2. Tanrisever, Fehmi & Derinkuyu, Kursad & Jongen, Geert, 2015. "Organization and functioning of liberalized electricity markets: An overview of the Dutch market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1363-1374.
    3. Marius Buchmann, 2019. "How decentralization drives a change of the institutional framework on the distribution grid level in the electricity sector – the case of local congestion markets," Bremen Energy Working Papers 0031, Bremen Energy Research.
    4. de Nooij, Michiel, 2011. "Social cost-benefit analysis of electricity interconnector investment: A critical appraisal," Energy Policy, Elsevier, vol. 39(6), pages 3096-3105, June.
    5. Mulder, M. & Willems, Bert, 2016. "Competition in Retail Electricity Markets : An Assessment of Ten Years Dutch Experience," Other publications TiSEM 2244d9a8-abf3-464d-aad7-e, Tilburg University, School of Economics and Management.
    6. Marius Buchmann, 2016. "Information Management in Smart Grids - Who Should Govern Information Management to Balance Between Coordination and Competition on the Distribution Grid Level?," Bremen Energy Working Papers 0022, Bremen Energy Research.
    7. Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
    8. Tsatsos, Aristidis, 2012. "Die Liberalisierung des russischen Gassektors: 3 Szenarios? [The liberalisation of the Russian gas sector: 3 scenarios?]," MPRA Paper 44623, University Library of Munich, Germany.
    9. Filippini, Massimo & Wetzel, Heike, 2014. "The impact of ownership unbundling on cost efficiency: Empirical evidence from the New Zealand electricity distribution sector," Energy Economics, Elsevier, vol. 45(C), pages 412-418.
    10. Milan Vondráček & Tomáš Skuček, 2010. "Unbundling costs in the energy sector: competitive environment for the customers´ benefits or too costly experiment?," Ekonomika a Management, Prague University of Economics and Business, vol. 2010(3).
    11. Brunekreeft, Gert, 2015. "Network unbundling and flawed coordination: Experience from the electricity sector," Utilities Policy, Elsevier, vol. 34(C), pages 11-18.
    12. Roland Meyer, 2012. "Vertical Economies and the Costs of Separating Electricity Supply--A Review of Theoretical and Empirical Literature," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Buchmann, Marius, 2017. "Governance of data and information management in smart distribution grids: Increase efficiency by balancing coordination and competition," Utilities Policy, Elsevier, vol. 44(C), pages 63-72.

  9. de Nooij, Michiel & Koopmans, Carl & Bijvoet, Carlijn, 2007. "The value of supply security: The costs of power interruptions: Economic input for damage reduction and investment in networks," Energy Economics, Elsevier, vol. 29(2), pages 277-295, March.

    Cited by:

    1. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    2. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    3. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
    4. Olaf Jonkeren & Bogdan Dorneanu & Georgios Giannopoulos & David Ward, 2012. "Regional economic assessment of Critical Infrastructure failure in the EU: A combined systems engineering and economic model," ERSA conference papers ersa12p92, European Regional Science Association.
    5. Graziano, Marcello & Gunther, Peter & Gallaher, Adam & Carstensen, Fred V. & Becker, Brian, 2020. "The wider regional benefits of power grids improved resilience through tree-trimming operations evidences from Connecticut, USA," Energy Policy, Elsevier, vol. 138(C).
    6. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    7. Pepermans, Guido, 2010. "The Value of Continuous Power Supply for Flemish Households," Working Papers 2010/24, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    8. Marcos Perroni & Luciano Luiz Dalazen & Wesley Vieira da Silva & Sergio Eduardo Gouv a da Costa & Claudimar Pereira da Veiga, 2015. "Evolution of Risks for Energy Companies from the Energy Efficiency Perspective: The Brazilian Case," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 612-623.
    9. Meier, Alan & Ueno, Tsuyoshi & Pritoni, Marco, 2019. "Using data from connected thermostats to track large power outages in the United States," Applied Energy, Elsevier, vol. 256(C).
    10. Majid Hashemi & Glenn P. Jenkins & Roop Jyoti & Aygul Ozbafli, 2018. "Evaluating the Cost to Industry of Electricity Outages," Development Discussion Papers 2018-14, JDI Executive Programs.
    11. de Nooij, Michiel & Baarsma, Barbara, 2009. "Divorce comes at a price: An ex ante welfare analysis of ownership unbundling of the distribution and commercial companies in the Dutch energy sector," Energy Policy, Elsevier, vol. 37(12), pages 5449-5458, December.
    12. Röpke, Luise, 2013. "The development of renewable energies and supply security: A trade-off analysis," Energy Policy, Elsevier, vol. 61(C), pages 1011-1021.
    13. Simona Galano & Luca Sessa & Simone ZuccolalÃ, 2022. "The quality of electricity supply: a comparison among Italian regions," Questioni di Economia e Finanza (Occasional Papers) 737, Bank of Italy, Economic Research and International Relations Area.
    14. Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2016. "Online and batch methods for solar radiation forecast under asymmetric cost functions," Renewable Energy, Elsevier, vol. 91(C), pages 397-408.
    15. de Nooij, Michiel, 2011. "Social cost-benefit analysis of electricity interconnector investment: A critical appraisal," Energy Policy, Elsevier, vol. 39(6), pages 3096-3105, June.
    16. Leahy, Eimear & Devitt, Conor & Lyons, Seán & Tol, Richard S. J., 2011. "The Cost of Natural Gas Shortages in Ireland," Papers WP397, Economic and Social Research Institute (ESRI).
    17. Leahy, Eimear & Tol, Richard S. J., 2010. "An Estimate of the Value of Lost Load for Ireland," Papers WP357, Economic and Social Research Institute (ESRI).
    18. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.
    19. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    20. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    21. Abrate, Graziano & Bruno, Clementina & Erbetta, Fabrizio & Fraquelli, Giovanni & Lorite-Espejo, Azahara, 2016. "A choice experiment on the willingness of households to accept power outages," Utilities Policy, Elsevier, vol. 43(PB), pages 151-164.
    22. Chen, Hao & Chen, Xi & Niu, Jinye & Xiang, Mengyu & He, Weijun & Küfeoğlu, Sinan, 2021. "Estimating the marginal cost of reducing power outage durations in China: A parametric distance function approach," Energy Policy, Elsevier, vol. 155(C).
    23. Becker, Sophia & Schober, Dominik & Wassermann, Sandra, 2016. "How to approach consumers’ nonmonetary evaluation of electricity supply security? The case of Germany from a multidisciplinary perspective," Utilities Policy, Elsevier, vol. 42(C), pages 74-84.
    24. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    25. Baarsma, Barbara E. & Hop, J. Peter, 2009. "Pricing power outages in the Netherlands," Energy, Elsevier, vol. 34(9), pages 1378-1386.
    26. Olaf Jonkeren & Ivano Azzini & Luca Galbusera & Stavros Ntalampiras & Georgios Giannopoulos, 2015. "Analysis of Critical Infrastructure Network Failure in the European Union: A Combined Systems Engineering and Economic Model," Networks and Spatial Economics, Springer, vol. 15(2), pages 253-270, June.
    27. Csereklyei, Zsuzsanna & Kallies, Anne & Diaz Valdivia, Andres, 2021. "The status of and opportunities for utility-scale battery storage in Australia: A regulatory and market perspective," Utilities Policy, Elsevier, vol. 73(C).
    28. Wu, Kuei-Yen & Huang, Yun-Hsun & Wu, Jung-Hua, 2018. "Impact of electricity shortages during energy transitions in Taiwan," Energy, Elsevier, vol. 151(C), pages 622-632.
    29. Zachariadis, Theodoros & Poullikkas, Andreas, 2012. "The costs of power outages: A case study from Cyprus," Energy Policy, Elsevier, vol. 51(C), pages 630-641.
    30. Lilliestam, Johan & Ellenbeck, Saskia, 2011. "Energy security and renewable electricity trade--Will Desertec make Europe vulnerable to the "energy weapon"?," Energy Policy, Elsevier, vol. 39(6), pages 3380-3391, June.
    31. Castro, Rui & Faias, Sérgio & Esteves, Jorge, 2016. "The cost of electricity interruptions in Portugal: Valuing lost load by applying the production-function approach," Utilities Policy, Elsevier, vol. 40(C), pages 48-57.
    32. Valdés Lucas, Javier Noel & Escribano Francés, Gonzalo & San Martín González, Enrique, 2016. "Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1032-1046.
    33. Apergis, Nicholas & Polemis, Michael, 2018. "Electricity supply shocks and economic growth across the US states: evidence from a time-varying Bayesian panel VAR model, aggregate and disaggregate energy sources," MPRA Paper 84954, University Library of Munich, Germany.
    34. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
    35. Monica Giulietti, Luigi Grossi, and Michael Waterson, 2012. "A Rough Analysis: Valuing Gas Storage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    36. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    37. Michael Schmidthaler & Jed Cohen & Johannes Reichl & Stefan Schmidinger, 2015. "The effects of network regulation on electricity supply security: a European analysis," Journal of Regulatory Economics, Springer, vol. 48(3), pages 285-316, December.
    38. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2021. "Are electricity system outages and the generation mix related? Evidence from NSW, Australia," Energy Economics, Elsevier, vol. 99(C).
    39. Woo, C.K. & Ho, T. & Shiu, A. & Cheng, Y.S. & Horowitz, I. & Wang, J., 2014. "Residential outage cost estimation: Hong Kong," Energy Policy, Elsevier, vol. 72(C), pages 204-210.
    40. Jamil, Muhammad Hamza & Ullah, Kafait & Saleem, Noor & Abbas, Faisal & Khalid, Hassan Abdullah, 2022. "Did the restructuring of the electricity generation sector increase social welfare in Pakistan?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    41. Castro, Manuel, 2017. "Assessing the risk profile to security of supply in the electricity market of Great Britain," Energy Policy, Elsevier, vol. 111(C), pages 148-156.
    42. Kim, Kayoung & Cho, Youngsang, 2017. "Estimation of power outage costs in the industrial sector of South Korea," Energy Policy, Elsevier, vol. 101(C), pages 236-245.
    43. Steven Arnold & Arno Behrens & Christian Egenhofer & Alistair Hunt & Anil Markandya & Adriaan van der Welle, 2010. "Electricity Supply Externalities: Energy Security," Chapters, in: Anil Markandya & Andrea Bigano & Roberto Porchia (ed.), The Social Cost of Electricity, chapter 2, Edward Elgar Publishing.
    44. Altvater, Susanne & de Block, Debora & Bouwma, Irene & Dworak, Thomas & Frelih-Larsen, Ana & Görlach, Benjamin & Hermeling, Claudia & Klostermann, Judith & König, Martin & Leitner, Markus & Marinova, , 2012. "Adaptation measures in the EU: Policies, costs, and economic assessment. "Climate Proofing" of key EU policies," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 110558.
    45. Minnaar, U.J. & Visser, W. & Crafford, J., 2017. "An economic model for the cost of electricity service interruption in South Africa," Utilities Policy, Elsevier, vol. 48(C), pages 41-50.
    46. Reichl, Johannes & Schmidthaler, Michael & Schneider, Friedrich, 2013. "The value of supply security: The costs of power outages to Austrian households, firms and the public sector," Energy Economics, Elsevier, vol. 36(C), pages 256-261.
    47. Coll-Mayor, Debora & Pardo, Juan & Perez-Donsion, Manuel, 2012. "Methodology based on the value of lost load for evaluating economical losses due to disturbances in the power quality," Energy Policy, Elsevier, vol. 50(C), pages 407-418.
    48. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    49. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
    50. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2006. "The Internalization of Externalities in The Production of Electricity: Willingness to Pay for the Attributes of a Policy for Renewable Energy," International Energy Markets Working Papers 12111, Fondazione Eni Enrico Mattei (FEEM).
    51. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    52. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    53. Myunghwan Kim & Seung-Hoon Yoo, 2012. "The Economic Cost of Unsupplied Diesel Product in Korea Using Input-Output Analysis," Energies, MDPI, vol. 5(9), pages 1-14, September.
    54. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro & de Jeu, Rob, 2017. "Towards a comprehensive policy for electricity from renewable energy: Designing for social welfare," Applied Energy, Elsevier, vol. 187(C), pages 228-242.
    55. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    56. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.
    57. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    58. Spiros Livieratos & Vasiliki-Emmanouela Vogiatzaki & Panayotis G. Cottis, 2013. "A Generic Framework for the Evaluation of the Benefits Expected from the Smart Grid," Energies, MDPI, vol. 6(2), pages 1-21, February.
    59. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
    60. Gert Brunekreeft & Marius Buchmann & Martin Palovic & Anna Pechan, "undated". "Resilience regulation: An incentive scheme for regulated electricity network operators to improve resilience," Bremen Energy Working Papers 0044, Bremen Energy Research.
    61. Henning Thiesen & Clemens Jauch & Arne Gloe, 2016. "Design of a System Substituting Today’s Inherent Inertia in the European Continental Synchronous Area," Energies, MDPI, vol. 9(8), pages 1-12, July.
    62. Baarsma, Barbara & de Nooij, Michiel & Koster, Weero & van der Weijden, Cecilia, 2007. "Divide and rule. The economic and legal implications of the proposed ownership unbundling of distribution and supply companies in the Dutch electricity sector," Energy Policy, Elsevier, vol. 35(3), pages 1785-1794, March.
    63. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    64. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58.
    65. Kate Anderson & Nicholas D. Laws & Spencer Marr & Lars Lisell & Tony Jimenez & Tria Case & Xiangkun Li & Dag Lohmann & Dylan Cutler, 2018. "Quantifying and Monetizing Renewable Energy Resiliency," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    66. Fakih Ali & Ghazzawi Nancy & Ghazalian Pascal, 2020. "The Effects of Power Outages on the Performance of Manufacturing Firms in the MENA Region," Review of Middle East Economics and Finance, De Gruyter, vol. 16(3), pages 1-28, December.
    67. Piaszeck, Simon & Wenzel, Lars & Wolf, André, 2013. "Regional diversity in the costs of electricity outages: Results for German counties," HWWI Research Papers 142, Hamburg Institute of International Economics (HWWI).
    68. Landegren, Finn & Johansson, Jonas & Samuelsson, Olof, 2019. "Quality of supply regulations versus societal priorities regarding electricity outage consequences: Case study in a Swedish context," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    69. Linares, Pedro & Rey, Luis, 2013. "The costs of electricity interruptions in Spain. Are we sending the right signals?," Energy Policy, Elsevier, vol. 61(C), pages 751-760.
    70. Raul Bajo Buenestado, 2020. "The Effect of Blackouts on Households Electrification Status: evidence from Kenya," Faculty Working Papers 02/20, School of Economics and Business Administration, University of Navarra.
    71. de Nooij, Michiel & Lieshout, Rogier & Koopmans, Carl, 2009. "Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing," Energy Economics, Elsevier, vol. 31(3), pages 342-347, May.
    72. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    73. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    74. Cohen, Jed J. & Moeltner, Klaus & Reichl, Johannes & Schmidthaler, Michael, 2016. "Linking the value of energy reliability to the acceptance of energy infrastructure: Evidence from the EU," Resource and Energy Economics, Elsevier, vol. 45(C), pages 124-143.
    75. Jed J. Cohen & Johannes Reichl, 2022. "Comparing Internet and phone survey mode effects across countries and research contexts," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 44-71, January.
    76. Hashemi, Majid, 2021. "The economic value of unsupplied electricity: Evidence from Nepal," Energy Economics, Elsevier, vol. 95(C).
    77. Chen, Hao & Yan, Haobo & Gong, Kai & Geng, Haopeng & Yuan, Xiao-Chen, 2022. "Assessing the business interruption costs from power outages in China," Energy Economics, Elsevier, vol. 105(C).
    78. Klinge Jacobsen, Henrik & Jensen, Stine Grenaa, 2009. "Electricity supply security: Cost efficiency of providing security and diversified consumer level," MPRA Paper 41707, University Library of Munich, Germany.
    79. Lynch, Muireann Á. & Tol, Richard S.J. & O'Malley, Mark J., 2012. "Optimal interconnection and renewable targets for north-west Europe," Energy Policy, Elsevier, vol. 51(C), pages 605-617.
    80. Nahmmacher, Paul & Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2016. "Strategies against shocks in power systems – An analysis for the case of Europe," Energy Economics, Elsevier, vol. 59(C), pages 455-465.
    81. Morrissey, Karyn & Plater, Andrew & Dean, Mary, 2018. "The cost of electric power outages in the residential sector: A willingness to pay approach," Applied Energy, Elsevier, vol. 212(C), pages 141-150.
    82. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
    83. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    84. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    85. Rahmatallah Poudineh and Tooraj Jamasb, 2017. "Electricity Supply Interruptions: Sectoral Interdependencies and the Cost of Energy Not Served for the Scottish Economy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    86. Praktiknjo, Aaron J. & Hähnel, Alexander & Erdmann, Georg, 2011. "Assessing energy supply security: Outage costs in private households," Energy Policy, Elsevier, vol. 39(12), pages 7825-7833.

  10. Baarsma, Barbara & de Nooij, Michiel & Koster, Weero & van der Weijden, Cecilia, 2007. "Divide and rule. The economic and legal implications of the proposed ownership unbundling of distribution and supply companies in the Dutch electricity sector," Energy Policy, Elsevier, vol. 35(3), pages 1785-1794, March.

    Cited by:

    1. de Nooij, Michiel & Baarsma, Barbara, 2009. "Divorce comes at a price: An ex ante welfare analysis of ownership unbundling of the distribution and commercial companies in the Dutch energy sector," Energy Policy, Elsevier, vol. 37(12), pages 5449-5458, December.
    2. Paul Nillesen & Michael Pollitt, 2008. "Ownership unbundling in electricity distribution: empirical evidence from New Zealand," Working Papers EPRG 0820, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Michael Pollitt, 2007. "The arguments for and against ownership unbundling of energy transmission networks," Working Papers EPRG 0714, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Paul Nillesen and Michael Pollitt, 2021. "Ownership Unbundling of Electricity Distribution Networks," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Tsatsos, Aristidis, 2012. "Die Liberalisierung des russischen Gassektors: 3 Szenarios? [The liberalisation of the Russian gas sector: 3 scenarios?]," MPRA Paper 44623, University Library of Munich, Germany.
    6. Meijer, L.L.J. & Huijben, J.C.C.M. & van Boxstael, A. & Romme, A.G.L., 2019. "Barriers and drivers for technology commercialization by SMEs in the Dutch sustainable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 114-126.
    7. Growitsch, Christian & Müller, Gernot & Stronzik, Marcus, 2008. "Ownership Unbundling in der Gaswirtschaft: Theoretische Grundlagen und empirische Evidenz," WIK Discussion Papers 308, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
    8. Nardi, Paolo, 2012. "Transmission network unbundling and grid investments: Evidence from the UCTE countries," Utilities Policy, Elsevier, vol. 23(C), pages 50-58.
    9. Milan Vondráček & Tomáš Skuček, 2010. "Unbundling costs in the energy sector: competitive environment for the customers´ benefits or too costly experiment?," Ekonomika a Management, Prague University of Economics and Business, vol. 2010(3).
    10. Testa, Federico & Stagnaro, Carlo, 2011. "Reti di trasporto nazionale e concorrenza nei mercati del gas: il caso Eni-Snam Rete Gas [Networks and competition in natural gas markets: the case of Eni-Snam Rete Gas]," MPRA Paper 48698, University Library of Munich, Germany.
    11. van Witteloostuijn, Arjen & Brakman, Steven & van Marrewijk, Charles, 2007. "Welfare distribution effect of a price reduction in the Dutch gas transport market: A scenario analysis of regulatory policy, market form and rent allocation," Energy Policy, Elsevier, vol. 35(12), pages 6299-6308, December.

  11. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    See citations under working paper version above.
  12. de Nooij, Michiel & van der Kruk, Rene & van Soest, Daan P., 2003. "International comparisons of domestic energy consumption," Energy Economics, Elsevier, vol. 25(4), pages 359-373, July.

    Cited by:

    1. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    2. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    3. Wolfgang Koller & Andreas Eder & Bernhard Mahlberg, 2023. "Industry-mix effects at different levels of sectoral disaggregation: a decomposition of inter-country differences in energy costs," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 883-897, November.
    4. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
    5. Soytas, Ugur & Sari, Ramazan, 2006. "Energy consumption and income in G-7 countries," Journal of Policy Modeling, Elsevier, vol. 28(7), pages 739-750, October.
    6. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    7. Rosa Duarte & Alfredo J. Mainar-Causapé & Julio Sánchez Chóliz, 2017. "Domestic GHG emissions and the responsibility of households in Spain: looking for regional differences," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5397-5411, November.
    8. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    9. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    10. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    11. Vladim r Hajko, 2015. "Energy-Gross Domestic Product Nexus: Disaggregated Analysis for the Czech Republic in the Post-Transformation Era," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 869-888.
    12. Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
    13. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    14. Soytas, Ugur & Sari, Ramazan, 2006. "Can China contribute more to the fight against global warming?," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 837-846, November.
    15. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    16. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

Chapters

  1. Michiel de Nooij & Marcel van den Berg & Henri L.F. de Groot, 2018. "Social cost benefit analysis of trade missions," Chapters, in: Research Handbook on Economic Diplomacy, chapter 14, pages 220-238, Edward Elgar Publishing.

    Cited by:

    1. Michiel de Nooij, 2014. "Mega Sport Events," Journal of Sports Economics, , vol. 15(4), pages 410-419, August.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.