IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v71y2022ics0160791x22002068.html
   My bibliography  Save this article

The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing

Author

Listed:
  • Yang, Bo
  • Liu, Baozhen
  • Peng, Jiachao
  • Liu, Xujun

Abstract

Energy-saving technology progress can solve the contradiction between economic growth and energy consumption. This paper divides China's manufacturing into 19 industries, describes the global value chain (GVC) embedding position trend, explores its impact on energy-biased technology progress and researches the mechanisms. The results show that (1) China's manufacturing technology progress tends toward energy conservation, and most industries participate in the GVC through shallow cross-border division. The simple embedding position is higher than the complex embedding position, and the physical position in the GVC is relatively stable; however, the economic position fluctuates significantly. (2) The GVC embedding position and the energy-biased technology progress show an inverted U-shaped curve relationship. Only when it enters the right side of the turning point and climbs to the high end of the GVC can it promote the development of energy-saving technology progress; the effects of the embedding method, embedding direction and position are heterogeneous. (3) The GVC embedding position's spillover and market competition effect promote energy-saving technology progress, while path dependence and the pollution transfer effect promote progress in energy-consuming technology.

Suggested Citation

  • Yang, Bo & Liu, Baozhen & Peng, Jiachao & Liu, Xujun, 2022. "The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing," Technology in Society, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002068
    DOI: 10.1016/j.techsoc.2022.102065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X22002068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2022.102065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    3. Gino Gancia & Fabrizio Zilibotti, 2009. "Technological Change and the Wealth of Nations," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 93-120, May.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Song, Yiru & Yu, Chunjiao & Hao, Lulu & Chen, Xi, 2021. "Path for China's high-tech industry to participate in the reconstruction of global value chains," Technology in Society, Elsevier, vol. 65(C).
    6. Yannick Lung, 2004. "The changing geography of the European automobile system," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 4(2/3), pages 137-165.
    7. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    8. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    9. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    10. Andrea Morrison & Carlo Pietrobelli & Roberta Rabellotti, 2008. "Global Value Chains and Technological Capabilities: A Framework to Study Learning and Innovation in Developing Countries," Oxford Development Studies, Taylor & Francis Journals, vol. 36(1), pages 39-58.
    11. Bessen, James, 2012. "More Machines, Better Machines…or Better Workers?," The Journal of Economic History, Cambridge University Press, vol. 72(1), pages 44-74, March.
    12. Jesús F. Lampón & Santiago Lago-Peñas & Pablo Cabanelas, 2016. "Can the periphery achieve core? The case of the automobile components industry in Spain," Papers in Regional Science, Wiley Blackwell, vol. 95(3), pages 595-612, August.
    13. Li, Songran & Shao, Qinglong, 2021. "Exploring the determinants of renewable energy innovation considering the institutional factors: A negative binomial analysis," Technology in Society, Elsevier, vol. 67(C).
    14. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    15. Zhi Wang & Shang-Jin Wei & Xinding Yu & Kunfu Zhu, 2017. "Characterizing Global Value Chains: Production Length and Upstreamness," NBER Working Papers 23261, National Bureau of Economic Research, Inc.
    16. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    17. Otto, Vincent M. & Loschel, Andreas & Dellink, Rob, 2007. "Energy biased technical change: A CGE analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 137-158, May.
    18. Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
    19. Robert Z. Lawrence & David E. Weinstein, 1999. "Trade and Growth: Import-Led or Export-Led? Evidence From Japan and Korea," NBER Working Papers 7264, National Bureau of Economic Research, Inc.
    20. Long, N.V. & Wong, K.Y., 1996. "Endogenous Growth and International Trade: A Survey," Discussion Papers in Economics at the University of Washington 96-07, Department of Economics at the University of Washington.
    21. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    22. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
    23. Gruenhagen, Jan Henrik & Cox, Stephen & Parker, Rachel, 2022. "An actor-oriented perspective on innovation systems: Functional analysis of drivers and barriers to innovation and technology adoption in the mining sector," Technology in Society, Elsevier, vol. 68(C).
    24. Carlo Carraro, Emanuele Massetti, Lea Nicita, 2009. "How Does Climate Policy Affect Technical Change? An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    25. Christopher W. Landsea, 2005. "Hurricanes and global warming," Nature, Nature, vol. 438(7071), pages 11-12, December.
    26. Brian R. Copeland & M. Scott Taylor, 1994. "North-South Trade and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 755-787.
    27. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    28. Noailly, Joëlle & Smeets, Roger, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Climate Change and Sustainable Development 148921, Fondazione Eni Enrico Mattei (FEEM).
    29. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    30. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    31. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    32. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    33. Shinnar, Reuel & Citro, Francesco, 2008. "Decarbonization: Achieving near-total energy independence and near-total elimination of greenhouse emissions with available technologies," Technology in Society, Elsevier, vol. 30(1), pages 1-16.
    34. Hu, Dianxi & Jiao, Jianling & Tang, Yunshu & Xu, Yuwen & Zha, Jianrui, 2022. "How global value chain participation affects green technology innovation processes: A moderated mediation model," Technology in Society, Elsevier, vol. 68(C).
    35. Meng, Bo & Peters, Glen P. & Wang, Zhi & Li, Meng, 2018. "Tracing CO2 emissions in global value chains," Energy Economics, Elsevier, vol. 73(C), pages 24-42.
    36. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Energy consumption, CO2 emissions, and economic growth: An ethical dilemma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 808-824.
    37. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    38. Robert Koopman & William Powers & Zhi Wang & Shang-Jin Wei, 2010. "Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains," NBER Working Papers 16426, National Bureau of Economic Research, Inc.
    39. Connolly, Michelle, 2003. "The dual nature of trade: measuring its impact on imitation and growth," Journal of Development Economics, Elsevier, vol. 72(1), pages 31-55, October.
    40. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachao Peng & Shuke Fu & Da Gao & Jiali Tian, 2023. "Greening China’s Growth: Assessing the Synergistic Impact of Financial Development and Technological Innovation on Environmental Pollution Reduction—A Spatial STIRPAT Analysis," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    2. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Directed Technological Change and Energy Efficiency Improvements," Working Papers 2015.78, Fondazione Eni Enrico Mattei.
    2. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
    3. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    4. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    5. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    7. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    8. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    9. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    10. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    11. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    12. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    13. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    14. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    15. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    16. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    17. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    18. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    19. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    20. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    21. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.