IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p5120-d1096971.html
   My bibliography  Save this article

Greening China’s Growth: Assessing the Synergistic Impact of Financial Development and Technological Innovation on Environmental Pollution Reduction—A Spatial STIRPAT Analysis

Author

Listed:
  • Jiachao Peng

    (School of Law and Business, Wuhan Institute of Technology, Wuhan 430205, China
    Center for High Quality Collaborative Development of Resources, Environment and Economy, Wuhan Institute of Technology, Wuhan 430205, China)

  • Shuke Fu

    (School of Law and Business, Wuhan Institute of Technology, Wuhan 430205, China
    Center for High Quality Collaborative Development of Resources, Environment and Economy, Wuhan Institute of Technology, Wuhan 430205, China)

  • Da Gao

    (School of Law and Business, Wuhan Institute of Technology, Wuhan 430205, China
    Center for High Quality Collaborative Development of Resources, Environment and Economy, Wuhan Institute of Technology, Wuhan 430205, China)

  • Jiali Tian

    (School of Law and Business, Wuhan Institute of Technology, Wuhan 430205, China
    Center for High Quality Collaborative Development of Resources, Environment and Economy, Wuhan Institute of Technology, Wuhan 430205, China)

Abstract

To achieve sustainable economic development in China, it is crucial to balance economic growth and environmental protection. Financial capital and technology can contribute positively to environmental pollution control. This study employs the Cournot model to examine the impact of financial development and technological innovation on environmental pollution at the micro level. It utilizes the spatial STIRPAT model to analyze inter-provincial panel data from China between 2005 and 2020. The results show that China’s ecological environment pollution exhibits significant spatial dependence, and heavily polluted areas tend to agglomerate. While improving financial development can increase regional environmental pressure, positive spatial spillover improves environmental quality in neighboring areas. Conversely, technological innovation reduces local ecological pressure, with negative spatial spillover effectively curbing environmental pollution in surrounding regions. The results support the environmental Kuznets curve (EKC) hypothesis, which posits an inverted U-shaped relationship between economic growth and environmental pressure, while population growth increases environmental pressure. The findings are robust and have important policy implications.

Suggested Citation

  • Jiachao Peng & Shuke Fu & Da Gao & Jiali Tian, 2023. "Greening China’s Growth: Assessing the Synergistic Impact of Financial Development and Technological Innovation on Environmental Pollution Reduction—A Spatial STIRPAT Analysis," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5120-:d:1096971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/5120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/5120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. John, A & Pecchenino, R, 1994. "An Overlapping Generations Model of Growth and the Environment," Economic Journal, Royal Economic Society, vol. 104(427), pages 1393-1410, November.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Markusen, James R. & Venables, Anthony J., 1999. "Foreign direct investment as a catalyst for industrial development," European Economic Review, Elsevier, vol. 43(2), pages 335-356, February.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Ummad Mazhar & Ceyhun Elgin, 2013. "Environmental Regulation, Pollution and the Informal Economy," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 9, pages 62-81.
    7. List, John A. & Co, Catherine Y., 2000. "The Effects of Environmental Regulations on Foreign Direct Investment," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 1-20, July.
    8. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    9. Da Gao & Yanjun Cao & Chang Liu, 2023. "The Low-Carbon Policy and Urban Green Total Factor Energy Efficiency: Evidence from a Spatial Difference-in-Difference Method," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    10. Shuke Fu & Jiabei Liu & Jiali Tian & Jiachao Peng & Chuyue Wu, 2023. "Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises," Energies, MDPI, vol. 16(1), pages 1-21, January.
    11. Susmita Dasgupta & Ashoka Mody & Subhendu Roy & David Wheeler, 2001. "Environmental Regulation and Development: A Cross-country Empirical Analysis," Oxford Development Studies, Taylor & Francis Journals, vol. 29(2), pages 173-187.
    12. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    13. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    14. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    15. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    16. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.
    17. Kim, Dong-Hyeon & Wu, Yi-Chen & Lin, Shu-Chin, 2020. "Carbon dioxide emissions and the finance curse," Energy Economics, Elsevier, vol. 88(C).
    18. Kemfert, Claudia, 2005. "Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM): Impact assessment of climate policy strategies," Ecological Economics, Elsevier, vol. 54(2-3), pages 293-305, August.
    19. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    20. Selden Thomas M. & Song Daqing, 1995. "Neoclassical Growth, the J Curve for Abatement, and the Inverted U Curve for Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 162-168, September.
    21. Tamazian, Artur & Chousa, Juan Piñeiro & Vadlamannati, Krishna Chaitanya, 2009. "Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries," Energy Policy, Elsevier, vol. 37(1), pages 246-253, January.
    22. Zahra Nasrollahi & Mohadeseh-sadat Hashemi & Saeed Bameri & Vahid Mohamad Taghvaee, 2020. "Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: using STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1105-1122, February.
    23. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    24. Shahbaz, Muhammad, 2013. "Does financial instability increase environmental degradation? Fresh evidence from Pakistan," Economic Modelling, Elsevier, vol. 33(C), pages 537-544.
    25. Yang, Bo & Liu, Baozhen & Peng, Jiachao & Liu, Xujun, 2022. "The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing," Technology in Society, Elsevier, vol. 71(C).
    26. Cole, Matthew A., 2004. "Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages," Ecological Economics, Elsevier, vol. 48(1), pages 71-81, January.
    27. Lopez, Ramon & Mitra, Siddhartha, 2000. "Corruption, Pollution, and the Kuznets Environment Curve," Journal of Environmental Economics and Management, Elsevier, vol. 40(2), pages 137-150, September.
    28. Letchumanan, Raman & Kodama, Fumio, 2000. "Reconciling the conflict between the 'pollution-haven' hypothesis and an emerging trajectory of international technology transfer," Research Policy, Elsevier, vol. 29(1), pages 59-79, January.
    29. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiming Zhang & Jiachao Peng & Lian Zhang, 2023. "Disruptive Displacement: The Impacts of Industrial Robots on the Energy Industry’s International Division of Labor from a Technological Complexity View," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    2. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    3. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    4. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    5. Ahmed Imran Hunjra & Tahar Tayachi & Muhammad Irfan Chani & Peter Verhoeven & Asad Mehmood, 2020. "The Moderating Effect of Institutional Quality on the Financial Development and Environmental Quality Nexus," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    6. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    7. MBASSI, Christophe Martial & HYOBA, Suzanne Edwige Clarisse & SHAHBAZ, Muhammad, 2023. "Does monetary policy really matter for environmental protection? The case of inflation targeting," Research in Economics, Elsevier, vol. 77(3), pages 427-452.
    8. Muhammad, Shahbaz & Tiwari, Aviral & Muhammad, Nasir, 2011. "The effects of financial development, economic growth, coal consumption and trade openness on environment performance in South Africa," MPRA Paper 32723, University Library of Munich, Germany, revised 10 Aug 2011.
    9. repec:ipg:wpaper:2014-582 is not listed on IDEAS
    10. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    11. Tamazian, Artur & Bhaskara Rao, B., 2010. "Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies," Energy Economics, Elsevier, vol. 32(1), pages 137-145, January.
    12. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    13. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    14. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    15. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    16. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    17. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    18. Chung Nguyen Hoang, 2021. "The Effects of Economic Integration on CO2 Emission: A View from Institutions in Emerging Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 374-383.
    19. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    20. Deng, Qiu Shi & Alvarado, Rafael & Cuesta, Lizeth & Tillaguango, Brayan & Murshed, Muntasir & Rehman, Abdul & Işık, Cem & López-Sánchez, Michelle, 2022. "Asymmetric impacts of foreign direct investment inflows, financial development, and social globalization on environmental pollution," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 236-251.
    21. Wen Jun & Muhammad Zakaria & Syed Jawad Hussain Shahzad & Hamid Mahmood, 2018. "Effect of FDI on Pollution in China: New Insights Based on Wavelet Approach," Sustainability, MDPI, vol. 10(11), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5120-:d:1096971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.