IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i3p1363-1367.html
   My bibliography  Save this article

Energy consumption trends in Hawaii

Author

Listed:
  • Kaya, Abidin
  • Yalcintas, Melek

Abstract

This study begins with a review of energy consumption by end-use sector in Hawaii. Then, the energy generated from renewable energy sources is analyzed between 1991 and 2006. The results show that while geothermal is a considerable source of renewable energy on the Island of Hawaii (also known as Big Island), fossil fuel is the main energy source in the State of Hawaii. The energy intensity index for the State of Hawaii is then calculated by dividing energy consumption per capita by the income per capita. The calculated energy intensity index reveals that energy consumption is directly controlled by per capita income. The results also indicate that the energy intensity index increases over time despite positive developments in energy efficient technologies. In the second part of the paper, the effect of the tourism industry on energy usage in the State of Hawaii is analyzed. The results show that tourism volume, measured in terms of tourist arrival numbers, does not change the energy consumption directly. However, a change in tourism volume does affect per capita income within a few months to a year. In the last part of the study, the energy efficiency index of Hawaii is compared with consumption averages for the US, California and the most energy efficient country in Europe, Denmark. The comparison shows that Hawaii lags behind California and Denmark in terms of energy efficiency. The comparison also shows that an increase in energy efficiency corresponds to an increase in per capita income across the board, which is in agreement with a recent report published by the American Physical Society.

Suggested Citation

  • Kaya, Abidin & Yalcintas, Melek, 2010. "Energy consumption trends in Hawaii," Energy, Elsevier, vol. 35(3), pages 1363-1367.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1363-1367
    DOI: 10.1016/j.energy.2009.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    2. Mithra Moezzi, 2000. "Decoupling Energy Efficiency from Energy Consumption," Energy & Environment, , vol. 11(5), pages 521-537, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    2. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    3. Aranda-Usón, Alfonso & Ferreira, Germán & Mainar-Toledo, M.D. & Scarpellini, Sabina & Llera Sastresa, Eva, 2012. "Energy consumption analysis of Spanish food and drink, textile, chemical and non-metallic mineral products sectors," Energy, Elsevier, vol. 42(1), pages 477-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    2. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
    3. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    4. Tiwari, Aviral, 2010. "On the dynamics of energy consumption and employment in public and private sector," MPRA Paper 24076, University Library of Munich, Germany.
    5. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous structural change and climate targets," Post-Print halshs-00009335, HAL.
    6. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    7. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    8. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    9. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    10. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    11. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    12. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    13. Zon, Adriaan van & Kronenberg, Tobias, 2005. "General Purpose Technologies and Energy Policy," Research Memorandum 011, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    14. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    15. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    16. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    17. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    18. Mare Sarr & Tim Swanson, 2017. "Will Technological Change Save the World? The Rebound Effect in International Transfers of Technology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 577-604, March.
    19. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    20. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1363-1367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.