IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v119y2013i1p77-80.html
   My bibliography  Save this article

Directed technological change and factor shares

Author

Listed:
  • Hart, Rob

Abstract

Directed technological change (DTC) concerns how stocks of factor-augmenting knowledge evolve relative to each other. We model investment in factor-augmenting knowledge at firm level, and show that relative investment rates depend on the relative factor shares and elasticities. Furthermore, we argue that links between the knowledge stocks and substitution between final goods are crucial to the long-run evolution of the economy.

Suggested Citation

  • Hart, Rob, 2013. "Directed technological change and factor shares," Economics Letters, Elsevier, vol. 119(1), pages 77-80.
  • Handle: RePEc:eee:ecolet:v:119:y:2013:i:1:p:77-80
    DOI: 10.1016/j.econlet.2013.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513000475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2013.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. William D. Nordhaus, 1973. "Some Skeptical Thoughts on the Theory of Induced Innovation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 208-219.
    3. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    4. Daron Acemoglu & Veronica Guerrieri, 2008. "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 467-498, June.
    5. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    6. Chow, Gregory C., 1997. "Dynamic Economics: Optimization by the Lagrange Method," OUP Catalogue, Oxford University Press, number 9780195101928, Decembrie.
    7. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1992. "Ivory Tower Versus Corporate Lab: An Empirical Study of Basic Research and Appropriability," NBER Working Papers 4146, National Bureau of Economic Research, Inc.
    8. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    9. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    2. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean innovation and heterogeneous financing costs," Working Papers 2023: 07, Department of Economics, University of Venice "Ca' Foscari".
    3. Hart, Rob, 2020. "Growth, pollution, policy!," European Economic Review, Elsevier, vol. 126(C).
    4. Gustav Engström & Johan Gars & Niko Jaakkola & Therese Lindahl & Daniel Spiro & Arthur A. van Benthem, 2020. "What Policies Address Both the Coronavirus Crisis and the Climate Crisis?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 789-810, August.
    5. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
    2. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    3. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    4. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
    5. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
    6. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    7. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    8. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    9. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    10. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    11. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    12. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    13. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    14. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    15. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    16. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    17. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    19. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    20. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:119:y:2013:i:1:p:77-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.