IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v36y2012i4p536-549.html
   My bibliography  Save this article

Sustainability and substitution of exhaustible natural resources

Author

Listed:
  • Bretschger, Lucas
  • Smulders, Sjak

Abstract

We study long-run growth in a multi-sector economy with non-renewable resource use and endogenous innovations. Unlike recent capital resource models, we find that poor input substitution need not be detrimental for sustainable growth; on the contrary, combined with resource depletion it fosters structural change, which helps to sustain research investments. We derive the properties of the transition path, show which sectors survive in the long run, and discuss whether the economy approximates a steady state with or without a scale effect. The results continue to hold when some sectors exhibit perfect competition.

Suggested Citation

  • Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
  • Handle: RePEc:eee:dyncon:v:36:y:2012:i:4:p:536-549
    DOI: 10.1016/j.jedc.2011.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016518891100217X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2011.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    3. Piyabha Kongsamut & Sergio Rebelo & Danyang Xie, 2001. "Beyond Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(4), pages 869-882.
    4. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    7. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    8. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    9. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    10. Edward Barbier, 1999. "Endogenous Growth and Natural Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 14(1), pages 51-74, July.
    11. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    12. Bretschger, Lucas, 1998. "How to substitute in order to sustain: knowledge driven growth under environmental restrictions," Environment and Development Economics, Cambridge University Press, vol. 3(4), pages 425-442, October.
    13. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    14. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    15. Mr. Sergio Rebelo & Ms. Piyabha Kongsamut & Danyang Xie, 2001. "Beyond Balanced Growth," IMF Working Papers 2001/085, International Monetary Fund.
    16. Christian Scholz & Georg Ziemes, 1999. "Exhaustible Resources, Monopolistic Competition, and Endogenous Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(2), pages 169-185, March.
    17. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    18. Christian Groth & Poul Schou, 2002. "Can non-renewable resources alleviate the knife-edge character of endogenous growth?," Oxford Economic Papers, Oxford University Press, vol. 54(3), pages 386-411, July.
    19. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    20. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 29-45.
    21. Di Maria, Corrado & Valente, Simone, 2008. "Hicks meets Hotelling: the direction of technical change in capital–resource economies," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 691-717, December.
    22. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    23. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    24. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    25. Ethier, Wilfred J, 1982. "National and International Returns to Scale in the Modern Theory of International Trade," American Economic Review, American Economic Association, vol. 72(3), pages 389-405, June.
    26. Peretto, Pietro F., 2009. "Energy taxes and endogenous technological change," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 269-283, May.
    27. Lopez, Ramon E. & Anriquez, Gustavo & Gulati, Sumeet, 2007. "Structural change and sustainable development," Journal of Environmental Economics and Management, Elsevier, vol. 53(3), pages 307-322, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    3. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    4. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    5. Bretschger, L. & Smulders, J.A., 2003. "Sustainability and Substitution of Exhaustible Natural Resources : How Resource Prices Affect Long-Term R&D Investments," Other publications TiSEM 2ae844f6-5ea5-45d4-963d-1, Tilburg University, School of Economics and Management.
    6. Bretschger, Lucas, 2015. "Energy prices, growth, and the channels in between: Theory and evidence," Resource and Energy Economics, Elsevier, vol. 39(C), pages 29-52.
    7. Hori, Takeo & Yamagami, Hiroaki, 2014. "Intellectual property rights protection in the presence of exhaustible resources," MPRA Paper 58064, University Library of Munich, Germany.
    8. Esther Fernández & Rafaela Pérez Sánchez & Jesús Ruiz, 2003. "Tax Reforms in an Endogenous Growth Model with Pollution," Economic Working Papers at Centro de Estudios Andaluces E2003/31, Centro de Estudios Andaluces.
    9. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    10. Karen Pittel & Lucas Bretschger, 2008. "Sectoral Heterogeneity, Resource Depletion, and Directed Technical Change: Theory and Policy," CER-ETH Economics working paper series 08/96, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    12. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
    13. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    14. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    15. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources," Energy Policy, Elsevier, vol. 54(C), pages 113-124.
    16. Takeo Hori & Hiroaki Yamagami, 2018. "Intellectual property rights protection in the presence of exhaustible resources," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 759-784, October.
    17. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    18. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    19. Ryo Horii & Masako Ikefuji, 2014. "Environment and Growth," DSSR Discussion Papers 21, Graduate School of Economics and Management, Tohoku University.
    20. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.

    More about this item

    Keywords

    Growth; Non-renewable resources; Substitution; Investment incentives; Endogenous technological change; Sustainability;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:4:p:536-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.