IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v76y2015icp76-86.html
   My bibliography  Save this article

Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea

Author

Listed:
  • Kim, Kayoung
  • Nam, Heekoo
  • Cho, Youngsang

Abstract

South Korea is experiencing a serious imbalance in electricity supply and demand, which caused a blackout in 2011. The Korean government has planned to perform a rolling blackout to prevent large-scale blackouts when the electricity supply reserve margin reaches less than 1million kW. This study attempts to estimate the inconvenience cost of household customers from a rolling blackout by using survey data. To this end, we apply a contingent valuation method (CVM) to measure their willingness-to-pay (WTP) in order to avoid a rolling blackout, i.e. the suspension of electricity supply. In this study, we estimate the inconvenience costs stemming from both an unannounced and an announced rolling blackout. As a result, we find that the inconvenience cost of a sudden rolling blackout is estimated at 3900.67KRW (3.56USD) per month per household, while that of an announced rolling blackout stands at 3102.95KRW (2.83USD). This difference in costs shows that people place value in receiving prior notice of a blackout, and that inconvenience costs of between 166.0 billion KRW (151.6million USD) and 174.3billion KRW (159.2million USD) per year can be reduced nationwide by giving households advance notice of a planned rolling blackout.

Suggested Citation

  • Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
  • Handle: RePEc:eee:enepol:v:76:y:2015:i:c:p:76-86
    DOI: 10.1016/j.enpol.2014.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514005643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Nooij, Michiel & Lieshout, Rogier & Koopmans, Carl, 2009. "Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing," Energy Economics, Elsevier, vol. 31(3), pages 342-347, May.
    2. Abdullah, Sabah & Mariel, Petr, 2010. "Choice experiment study on the willingness to pay to improve electricity services," Energy Policy, Elsevier, vol. 38(8), pages 4570-4581, August.
    3. Seung-Hoon Yoo & Seung-Jun Kwak, 2002. "Using a spike model to deal with zero response data from double bounded dichotomous choice contingent valuation surveys," Applied Economics Letters, Taylor & Francis Journals, vol. 9(14), pages 929-932.
    4. Roe, Brian & Teisl, Mario F. & Levy, Alan & Russell, Matthew, 2001. "US consumers' willingness to pay for green electricity," Energy Policy, Elsevier, vol. 29(11), pages 917-925, September.
    5. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    6. Carlsson, Fredrik & Martinsson, Peter, 2008. "Does it matter when a power outage occurs? -- A choice experiment study on the willingness to pay to avoid power outages," Energy Economics, Elsevier, vol. 30(3), pages 1232-1245, May.
    7. Bateman, Ian J. & Langford, Ian H. & Jones, Andrew P. & Kerr, Geoffrey N., 2001. "Bound and path effects in double and triple bounded dichotomous choice contingent valuation," Resource and Energy Economics, Elsevier, vol. 23(3), pages 191-213, July.
    8. Woo, C.K. & Ho, T. & Shiu, A. & Cheng, Y.S. & Horowitz, I. & Wang, J., 2014. "Residential outage cost estimation: Hong Kong," Energy Policy, Elsevier, vol. 72(C), pages 204-210.
    9. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    10. Zachariadis, Theodoros & Pashourtidou, Nicoletta, 2007. "An empirical analysis of electricity consumption in Cyprus," Energy Economics, Elsevier, vol. 29(2), pages 183-198, March.
    11. Egelioglu, F. & Mohamad, A.A. & Guven, H., 2001. "Economic variables and electricity consumption in Northern Cyprus," Energy, Elsevier, vol. 26(4), pages 355-362.
    12. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    13. de Nooij, Michiel & Koopmans, Carl & Bijvoet, Carlijn, 2007. "The value of supply security: The costs of power interruptions: Economic input for damage reduction and investment in networks," Energy Economics, Elsevier, vol. 29(2), pages 277-295, March.
    14. Brown, Gardner, Jr & Johnson, M Bruce, 1969. "Public Utility Pricing and Output under Risk," American Economic Review, American Economic Association, vol. 59(1), pages 119-128, March.
    15. Fredrik Carlsson & Peter Martinsson, 2007. "Willingness to Pay among Swedish Households to Avoid Power Outages: A Random Parameter Tobit Model Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-90.
    16. David J. Bjornstad & James R. Kahn (ed.), 1996. "The Contingent Valuation of Environmental Resources," Books, Edward Elgar Publishing, number 731.
    17. Cameron Trudy Ann & Quiggin John, 1994. "Estimation Using Contingent Valuation Data from a Dichotomous Choice with Follow-Up Questionnaire," Journal of Environmental Economics and Management, Elsevier, vol. 27(3), pages 218-234, November.
    18. Loomis, John B., 1990. "Comparative reliability of the dichotomous choice and open-ended contingent valuation techniques," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 78-85, January.
    19. Asher A. Blass & Saul Lach & Charles F. Manski, 2010. "Using Elicited Choice Probabilities To Estimate Random Utility Models: Preferences For Electricity Reliability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(2), pages 421-440, May.
    20. Doucet, Joseph A. & Jo Min, Kyung & Roland, Michel & Strauss, Todd, 1996. "Electricity rationing through a two-stage mechanism," Energy Economics, Elsevier, vol. 18(3), pages 247-263, July.
    21. Bentzen, Jan & Engsted, Tom, 2001. "A revival of the autoregressive distributed lag model in estimating energy demand relationships," Energy, Elsevier, vol. 26(1), pages 45-55.
    22. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    23. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    24. Daniel McFadden, 1994. "Contingent Valuation and Social Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 689-708.
    25. Reichl, Johannes & Schmidthaler, Michael & Schneider, Friedrich, 2013. "The value of supply security: The costs of power outages to Austrian households, firms and the public sector," Energy Economics, Elsevier, vol. 36(C), pages 256-261.
    26. Sanghvi, Arun P., 1982. "Economic costs of electricity supply interruptions : US and foreign experience," Energy Economics, Elsevier, vol. 4(3), pages 180-198, July.
    27. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    28. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    29. Coll-Mayor, Debora & Pardo, Juan & Perez-Donsion, Manuel, 2012. "Methodology based on the value of lost load for evaluating economical losses due to disturbances in the power quality," Energy Policy, Elsevier, vol. 50(C), pages 407-418.
    30. Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
    31. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
    32. Koli Fatai & Les Oxley & Frank G. Scrimgeour, 2003. "Modeling and Forecasting the Demand for Electricity in New Zealand: A Comparison of Alternative Approaches," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-102.
    33. Baarsma, Barbara E. & Hop, J. Peter, 2009. "Pricing power outages in the Netherlands," Energy, Elsevier, vol. 34(9), pages 1378-1386.
    34. Hondroyiannis, George, 2004. "Estimating residential demand for electricity in Greece," Energy Economics, Elsevier, vol. 26(3), pages 319-334, May.
    35. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    36. Praktiknjo, Aaron J. & Hähnel, Alexander & Erdmann, Georg, 2011. "Assessing energy supply security: Outage costs in private households," Energy Policy, Elsevier, vol. 39(12), pages 7825-7833.
    37. Zachariadis, Theodoros & Poullikkas, Andreas, 2012. "The costs of power outages: A case study from Cyprus," Energy Policy, Elsevier, vol. 51(C), pages 630-641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vennemo, Haakon & Rosnes, Orvika & Skulstad, Andreas, 2022. "The cost to households of a large electricity outage," Energy Economics, Elsevier, vol. 116(C).
    2. Huh, Sung-Yoon & Woo, JongRoul & Lim, Sesil & Lee, Yong-Gil & Kim, Chang Seob, 2015. "What do customers want from improved residential electricity services? Evidence from a choice experiment," Energy Policy, Elsevier, vol. 85(C), pages 410-420.
    3. Nkosi, Nomsa Phindile & Dikgang, Johane, 2018. "Pricing electricity blackouts among South African households," Journal of Commodity Markets, Elsevier, vol. 11(C), pages 37-47.
    4. Lee, Juyong & Cho, Youngsang, 2022. "Determinants of reserve margin volatility: A new approach toward managing energy supply and demand," Energy, Elsevier, vol. 252(C).
    5. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2021. "Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana," Energies, MDPI, vol. 14(12), pages 1-26, June.
    6. Aweke, Abinet Tilahun & Navrud, Ståle, 2022. "Valuing energy poverty costs: Household welfare loss from electricity blackouts in developing countries," Energy Economics, Elsevier, vol. 109(C).
    7. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    8. Brown, David B. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," RFF Working Paper Series 23-10, Resources for the Future.
    9. Carlsson, Fredrik & Kataria, Mitesh & Lampi, Elina & Martinsson, Peter, 2021. "Past and present outage costs – A follow-up study of households’ willingness to pay to avoid power outages," Resource and Energy Economics, Elsevier, vol. 64(C).
    10. Kim, Kayoung & Cho, Youngsang, 2017. "Estimation of power outage costs in the industrial sector of South Korea," Energy Policy, Elsevier, vol. 101(C), pages 236-245.
    11. Kim, Mo Se & Lee, Byung Sung & Lee, Hye Seon & Lee, Seung Ho & Lee, Junseok & Kim, Wonse, 2020. "Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression," Applied Energy, Elsevier, vol. 278(C).
    12. Majid Hashemi, 2021. "The Effect of Reliability Improvements on Household Electricity Consumption and Coping Behavior: A Multi-dimensional Approach," Working Paper 1469, Economics Department, Queen's University.
    13. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
    14. Johane Dikgang & Nomsa P. Nkosi, 2018. "Pricing electricty blackout among South African households," Working Papers 727, Economic Research Southern Africa.
    15. Yuyama, Ayumi & Kajitani, Yoshio & Shoji, Gaku, 2018. "Simulation of operational reliability of thermal power plants during a power crisis: Are we underestimating power shortage risk?," Applied Energy, Elsevier, vol. 231(C), pages 901-913.
    16. Kang, Byung O. & Lee, Munsu & Kim, Youngil & Jung, Jaesung, 2018. "Economic analysis of a customer-installed energy storage system for both self-saving operation and demand response program participation in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 69-83.
    17. Lee, Juyong & Cho, Youngsang, 2018. "Inconvenience cost of mobile communication failure: The case of South Korea," Telecommunications Policy, Elsevier, vol. 42(3), pages 241-252.
    18. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    2. Ju-Hee Kim & Kyung-Kyu Lim & Seung-Hoon Yoo, 2019. "Evaluating Residential Consumers’ Willingness to Pay to Avoid Power Outages in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-12, February.
    3. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
    4. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    5. Morrissey, Karyn & Plater, Andrew & Dean, Mary, 2018. "The cost of electric power outages in the residential sector: A willingness to pay approach," Applied Energy, Elsevier, vol. 212(C), pages 141-150.
    6. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    7. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    8. Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
    9. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    10. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    11. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    12. Hee-Hoon Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Residential Consumers’ Willingness to Pay Price Premium for Renewable Heat in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-14, February.
    13. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2019. "Willingness to Pay Price Premium for Smartphones Produced Using Renewable Energy," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    14. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    15. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    16. Woo, C.K. & Ho, T. & Shiu, A. & Cheng, Y.S. & Horowitz, I. & Wang, J., 2014. "Residential outage cost estimation: Hong Kong," Energy Policy, Elsevier, vol. 72(C), pages 204-210.
    17. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
    18. Ghosh, Ranjan & Goyal, Yugank & Rommel, Jens & Sagebiel, Julian, 2017. "Are small firms willing to pay for improved power supply? Evidence from a contingent valuation study in India," Energy Policy, Elsevier, vol. 109(C), pages 659-665.
    19. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    20. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:76:y:2015:i:c:p:76-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.