IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v83y2015icp82-86.html
   My bibliography  Save this article

Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea

Author

Listed:
  • Song, Tae-Ho
  • Lim, Kyoung-Min
  • Yoo, Seung-Hoon

Abstract

The Korean government set out the carbon dioxide (CO2) emissions reduction target as 30% below business-as-usual by 2020. The CO2 emissions trading scheme (ETS) was initiated in January 2015 to meet this target. We attempt to estimate the public's value of implementing the ETS for CO2 emissions reduction. We apply the contingent valuation (CV) method using the willingness to pay (WTP) data obtained from a national CV survey of 1000 randomly selected households. The survey was conducted via in-person interviews. Value judgments required of the respondents were within their abilities. The mean WTP to achieve the stated target of CO2 emissions reduction using ETS is estimated to be KRW 1873 (USD 1.66) per household per month, which is statistically significant at the 1% level. The aggregate national value amounts to KRW 409.2 billion (USD 363.4 million) per year. Thus, even though Korea has no obligations to cut emissions under the Kyoto protocol, the public is willing to bear a financial burden to implement the ETS. If its cost is less than this value, implementing the ETS can be socially profitable. The results of this study can serve as a basis for further policy discussions and decisions.

Suggested Citation

  • Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
  • Handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:82-86
    DOI: 10.1016/j.enpol.2015.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515001494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fredrik Carlsson & Mitesh Kataria & Alan Krupnick & Elina Lampi & Åsa Löfgren & Ping Qin & Susie Chun & Thomas Sterner, 2012. "Paying for Mitigation: A Multiple Country Study," Land Economics, University of Wisconsin Press, vol. 88(2), pages 326-340.
    2. Seung-Hoon Yoo & Seung-Jun Kwak, 2002. "Using a spike model to deal with zero response data from double bounded dichotomous choice contingent valuation surveys," Applied Economics Letters, Taylor & Francis Journals, vol. 9(14), pages 929-932.
    3. Bateman, Ian J. & Langford, Ian H. & Jones, Andrew P. & Kerr, Geoffrey N., 2001. "Bound and path effects in double and triple bounded dichotomous choice contingent valuation," Resource and Energy Economics, Elsevier, vol. 23(3), pages 191-213, July.
    4. Joseph C. Cooper & Michael Hanemann & Giovanni Signorello, 2002. "One-and-One-Half-Bound Dichotomous Choice Contingent Valuation," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 742-750, November.
    5. Joo-Suk Lee & Seung-Hoon Yoo & Seung-Jun Kwak, 2010. "Public's willingness to pay for preventing climate change," Applied Economics Letters, Taylor & Francis Journals, vol. 17(6), pages 619-622.
    6. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    7. David J. Bjornstad & James R. Kahn (ed.), 1996. "The Contingent Valuation of Environmental Resources," Books, Edward Elgar Publishing, number 731.
    8. Kotchen, Matthew J. & Boyle, Kevin J. & Leiserowitz, Anthony A., 2013. "Willingness-to-pay and policy-instrument choice for climate-change policy in the United States," Energy Policy, Elsevier, vol. 55(C), pages 617-625.
    9. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    10. Daniel McFadden, 1994. "Contingent Valuation and Social Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 689-708.
    11. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    12. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    13. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Yongrok & Liu, Yu & Lee, Hyoungseok, 2017. "The economy impacts of Korean ETS with an emphasis on sectoral coverage based on a CGE approach," Energy Policy, Elsevier, vol. 109(C), pages 835-844.
    2. Hammerle, Mara & Best, Rohan & Crosby, Paul, 2021. "Public acceptance of carbon taxes in Australia," Energy Economics, Elsevier, vol. 101(C).
    3. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    4. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    5. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    6. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    7. Seo, Su Been & Go, Eun Sol & Ling, Jester Lih Jie & Lee, See Hoon, 2022. "Techno-economic assessment of a solar-assisted biomass gasification process," Renewable Energy, Elsevier, vol. 193(C), pages 23-31.
    8. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    9. Seul-Ye Lim & Hyo-Jin Kim & Seung-Hoon Yoo, 2017. "South Korean Household’s Willingness to Pay for Replacing Coal with Natural Gas? A View from CO 2 Emissions Reduction," Energies, MDPI, vol. 10(12), pages 1-9, December.
    10. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    11. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    12. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    13. Dongmin Son & Joonrak Kim & Bongju Jeong, 2019. "Optimal Operational Strategy for Power Producers in Korea Considering Renewable Portfolio Standards and Emissions Trading Schemes," Energies, MDPI, vol. 12(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    2. Ju-Hee Kim & Kyung-Kyu Lim & Seung-Hoon Yoo, 2019. "Evaluating Residential Consumers’ Willingness to Pay to Avoid Power Outages in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-12, February.
    3. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    4. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2019. "Willingness to Pay Price Premium for Smartphones Produced Using Renewable Energy," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "The Korean public's willingness to pay for expanding the use of solid refuse fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 821-827.
    6. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    7. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    8. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    9. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    10. Hee-Hoon Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Residential Consumers’ Willingness to Pay Price Premium for Renewable Heat in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-14, February.
    11. Lim, Seul-Ye & Min, Seo-Hyeon & Yoo, Seung-Hoon, 2016. "The public value of contaminated soil remediation in Janghang copper smelter of Korea," Resources Policy, Elsevier, vol. 50(C), pages 66-74.
    12. Lee, Gunwoo & Kim, Soo-Yeob & Lee, Min-Kyu, 2015. "Economic evaluation of vessel traffic service (VTS): A contingent valuation study," Marine Policy, Elsevier, vol. 61(C), pages 149-154.
    13. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.
    14. Lim, Hea-Jin & Yoo, Seung-Hoon, 2014. "Train travel passengers' willingness to pay to offset their CO2 emissions in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 526-531.
    15. Kim, Ju-Hee & Yoo, Seung-Hoon, 2020. "South Koreans’ perspective on assisting the power supply to North Korea: Evidence from a contingent valuation," Energy Policy, Elsevier, vol. 139(C).
    16. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "Are Korean Households Willing to Pay a Premium for Induction Cooktops over Gas Stoves?," Sustainability, MDPI, vol. 9(9), pages 1-10, August.
    17. Seo-Hyeon Min & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "Consumers’ Willingness to Pay a Premium for Eco-Labeled LED TVs in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    18. Ho-Young Kim & So-Yeon Park & Seung-Hoon Yoo, 2016. "Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    19. Kim, Hyo-Jin & Lee, Hye-Jeong & Yoo, Seung-Hoon, 2018. "Are South Korean people willing to pay for official development assistance for building renewable power plants in developing countries?," Energy Policy, Elsevier, vol. 118(C), pages 626-632.
    20. Won-Seok Lee & Seung-Hoon Yoo & Jeehyeong Kim, 2013. "Measuring the Economic Benefits of the Tap Water Supply Service in Urban Areas: The Case of Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 619-627, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:82-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.