IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1234-d209194.html
   My bibliography  Save this article

Residential Consumers’ Willingness to Pay Price Premium for Renewable Heat in South Korea

Author

Listed:
  • Hee-Hoon Kim

    (Department of Energy Policy, Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

  • Seul-Ye Lim

    (Research Strategy Department, Frontier Research and Training Institute, Korea District Heating Corporation, 92 Gigok-Ro, Giheung-Gu, Yongin, Gyeonggi 17099, Korea)

  • Seung-Hoon Yoo

    (Department of Energy Policy, Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

Abstract

Heat accounts for about one-third of the final energy use and it is mostly produced using fossil fuels in South Korea. Thus, heat production is an important source of greenhouse gas emissions. However, using renewable heat that is directly produced from renewable energy, such as bioenergy, geothermal, or solar heat can save energy and reduce greenhouse gas emissions, rather than transforming conventional fuel into heat. Therefore, an energy policy for renewable heat urgently needs to be established. It is such situations that this paper attempts to assess the consumers’ additional willingness to pay (WTP) or the price premium for renewable heat over heat that is produced from fossil fuels for residential heating. To that end, a nationwide contingent valuation survey of 1000 households was conducted during August 2018. Employing the model allowing for zero WTP values, the mean of the additional WTP or premium for one Gcal of heat produced using renewable energy rather than fossil fuels was estimated to be KRW 3636 (USD 3.2), which is statistically meaningful at the 1% level. This value represents the price premium for renewable heat over heat that is based on fossil fuels. Given that the heat price for residential heating was approximately KRW 73,000 (USD 65.1) per Gcal at the time of the survey, the additional WTP or the price premium corresponds to about 5% of that. When considering that the cost of producing renewable heat is still significantly higher than the cost of producing fossil fuels-based heat, more efforts to lower the production costs of renewable heat as well as financial support of the government for producing and supplying renewable heat are needed to ensure residential consumers’ acceptance of renewable heat.

Suggested Citation

  • Hee-Hoon Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Residential Consumers’ Willingness to Pay Price Premium for Renewable Heat in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1234-:d:209194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bateman, Ian J. & Langford, Ian H. & Jones, Andrew P. & Kerr, Geoffrey N., 2001. "Bound and path effects in double and triple bounded dichotomous choice contingent valuation," Resource and Energy Economics, Elsevier, vol. 23(3), pages 191-213, July.
    2. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & McLennan, Campbell & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2013. "Is Renewable Heat Incentive the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 365-378.
    3. Cameron Trudy Ann & Quiggin John, 1994. "Estimation Using Contingent Valuation Data from a Dichotomous Choice with Follow-Up Questionnaire," Journal of Environmental Economics and Management, Elsevier, vol. 27(3), pages 218-234, November.
    4. Seul-Ye Lim & Hyo-Jin Kim & Seung-Hoon Yoo, 2017. "South Korean Household’s Willingness to Pay for Replacing Coal with Natural Gas? A View from CO 2 Emissions Reduction," Energies, MDPI, vol. 10(12), pages 1-9, December.
    5. Rodolfo M. Nayga & Richard Woodward & Wipon Aiew, 2006. "Willingness to Pay for Reduced Risk of Foodborne Illness: A Nonhypothetical Field Experiment," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 54(4), pages 461-475, December.
    6. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    7. Daniel McFadden, 1994. "Contingent Valuation and Social Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 689-708.
    8. Assali, Alia & Khatib, Tamer & Najjar, Angham, 2019. "Renewable energy awareness among future generation of Palestine," Renewable Energy, Elsevier, vol. 136(C), pages 254-263.
    9. MacKerron, George J. & Egerton, Catrin & Gaskell, Christopher & Parpia, Aimie & Mourato, Susana, 2009. "Willingness to pay for carbon offset certification and co-benefits among (high-)flying young adults in the UK," Energy Policy, Elsevier, vol. 37(4), pages 1372-1381, April.
    10. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    11. Roberto Ponce & Felipe Vásquez & Alejandra Stehr & Patrick Debels & Carlos Orihuela, 2011. "Estimating the Economic Value of Landscape Losses Due to Flooding by Hydropower Plants in the Chilean Patagonia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2449-2466, August.
    12. Joseph C. Cooper & Michael Hanemann & Giovanni Signorello, 2002. "One-and-One-Half-Bound Dichotomous Choice Contingent Valuation," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 742-750, November.
    13. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    14. David J. Bjornstad & James R. Kahn (ed.), 1996. "The Contingent Valuation of Environmental Resources," Books, Edward Elgar Publishing, number 731.
    15. Hensher, David A. & Shore, Nina & Train, Kenneth, 2014. "Willingness to pay for residential electricity supply quality and reliability," Applied Energy, Elsevier, vol. 115(C), pages 280-292.
    16. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    17. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.
    18. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    19. Seo-Hyeon Min & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The environmental benefits of reducing thermal discharge from nuclear power generation," Energy & Environment, , vol. 28(8), pages 885-894, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liobikienė, Genovaitė & Miceikienė, Astrida, 2022. "The role of financial, social and informational mechanisms on willingness to use bioenergy," Renewable Energy, Elsevier, vol. 194(C), pages 21-27.
    2. Pavlović, Boban & Ivezić, Dejan & Živković, Marija, 2022. "Transition pathways of household heating in Serbia: Analysis based on an agent-based model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Georgia K. Roberts & Dominique J. Pride & Joseph M. Little & Julie M. Mueller, 2023. "Willingness to Pay for Renewably-Sourced Home Heating in the Fairbanks North Star Borough," Energies, MDPI, vol. 16(8), pages 1-14, April.
    4. Marilena Mironiuc & Elena Ionașcu & Maria Carmen Huian & Alina Țaran, 2021. "Reflecting the Sustainability Dimensions on the Residential Real Estate Prices," Sustainability, MDPI, vol. 13(5), pages 1-28, March.
    5. Anastasija Novikova & Lucia Rocchi & Bernardas Vaznonis, 2019. "Valuing Agricultural Landscape: Lithuanian Case Study Using a Contingent Valuation Method," Sustainability, MDPI, vol. 11(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju-Hee Kim & Kyung-Kyu Lim & Seung-Hoon Yoo, 2019. "Evaluating Residential Consumers’ Willingness to Pay to Avoid Power Outages in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-12, February.
    2. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2019. "Willingness to Pay Price Premium for Smartphones Produced Using Renewable Energy," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    3. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    4. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    5. Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
    6. Kim, Hyo-Jin & Lee, Hye-Jeong & Yoo, Seung-Hoon, 2018. "Are South Korean people willing to pay for official development assistance for building renewable power plants in developing countries?," Energy Policy, Elsevier, vol. 118(C), pages 626-632.
    7. Won-Seok Lee & Seung-Hoon Yoo & Jeehyeong Kim, 2013. "Measuring the Economic Benefits of the Tap Water Supply Service in Urban Areas: The Case of Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 619-627, January.
    8. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    9. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    10. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    11. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    12. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "Are Korean Households Willing to Pay a Premium for Induction Cooktops over Gas Stoves?," Sustainability, MDPI, vol. 9(9), pages 1-10, August.
    13. Lim, Seul-Ye & Min, Seo-Hyeon & Yoo, Seung-Hoon, 2016. "The public value of contaminated soil remediation in Janghang copper smelter of Korea," Resources Policy, Elsevier, vol. 50(C), pages 66-74.
    14. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "The Korean public's willingness to pay for expanding the use of solid refuse fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 821-827.
    15. Seul-Ye Lim & Se-Jun Jin & Seung-Hoon Yoo, 2017. "The Economic Benefits of the Dokdo Seals Restoration Project in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    16. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    17. Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Will South Korean Residential Consumers Accept the Renewable Heat Incentive Scheme? A Stated Preference Approach," Energies, MDPI, vol. 12(10), pages 1-9, May.
    18. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    19. Ho-Young Kim & So-Yeon Park & Seung-Hoon Yoo, 2016. "Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    20. Lee, Gunwoo & Kim, Soo-Yeob & Lee, Min-Kyu, 2015. "Economic evaluation of vessel traffic service (VTS): A contingent valuation study," Marine Policy, Elsevier, vol. 61(C), pages 149-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1234-:d:209194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.